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ABSTRACT

This paper presents a new synthesis method for Hybrid Filter Banks
A/D converters (HFB-ADC). As most of the classical methods min-
imizes a SDR criterion, which is too restrictive, this method mini-
mizes the SNR criterion. Unlike the few methods minimizing also
the SNR, this one does not involve any optimization process.

1. INTRODUCTION

The future applications of cognitive radio require digitization sys-
tems being capable to perform a flexible conversion in terms of
bandwidth and resolution without increasing unreasonably the
power consumption. The digitization systems based on Hybrid
Filter Banks A/D converters (HFB-ADC) introduced in [1] provide
an attractive solution for achieving this purpose. One difficulty is to
match the synthesis filters with the analysis filters in order to recon-
struct a correct wide-band signal. This paper deals with the synthesis
methods that calculate off-line the optimal synthesis filters from the
knowledge of the analysis filter frequency responses. Some of them
try to approach the Perfect Reconstruction equations [2] [3]. In that
case, the minimized criterion is a signal-to-distortion ratio (SDR).
However, it is well known that this criterion is more restrictive than
a SNR criterion which is typically requested in receivers. Therefore,
other methods focus on minimizing the SNR. The main difficulty
is that it may lead to the minimization of a non-linear criterion in-
volving consequently an optimization process [4]. In this paper, we
propose a synthesis method that minimizes the SNR of the HFB-
ADC and whose the optimal solution has an analytical expression.
The selected criterion is similar to the maximum shortening signal
to noise ratio (MSSNR) criterion used in channel equalization for
OFDM systems [5]. However, the context is very different because
each path is undersampled, which leads to aliasing terms that have
to be canceled. In Section 2, a very classical method that minimizes
the SDR is presented in order to introduce notation and to have a
reference. Section 3 presents the SNR criterion in the context of
Hybrid Filter Bank A/D converters. Finally, simulations have been
carried out and are presented in Section 4. Results are compared
with the classical method ones.

2. CLASSICAL DESIGN METHOD

2.1. Review of theoretical principles

Fig. 1 depicts the HFB-ADC scheme. The continuous input sig-
nal x(t) is assumed to be band-limited to the frequency interval[
− 1

2T
, 1

2T

]
. To avoid aliasing, the minimum sampling rate that has

to be used is given by the Nyquist rate, 1
T

. For applications using
wide-band signals, such a rate could reach high values that go be-
yond the ability of conventional ADCs. Instead of operating at the
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+
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Fig. 1. Scheme of a HFB-ADC

Nyquist rate, an M branch HFB-ADC is based on the use of M
band-pass analog filters referred to as an analysis filter bank in or-
der to split up the frequency band into M parts. The output of each
analog filter is then sampled at a rate of 1

MT
before being quan-

tized, through an ADC bank. Quantizers Q1, · · · , QM are assumed
to have the same characteristics and are modeled as an additive uni-
form source of noise with a constant spectral density of 10

− 6r
10

M2 at all
the frequency range, where r is the resolution of each ADC. Letting
Ek(ejΩT ) be the Fourier transform of the k-th quantizer noise, the
Fourier transform of the output signal y(n) is given by:

Y (eΩT ) =
M∑
k=1

Fk(eω)Xk(eMΩT )+Ek(eMΩT )Fk(eΩT ) (1)

whereXk(eMΩT ) is derived using the Poisson summation formula:

Xk(eMΩT ) =
1

MT

+∞∑
p=−∞

X(Ω−  2πp

MT
)Hk(Ω−  2πp

MT
) (2)

Plugging (2) into (1), we obtain:

Y (eω) =
1

MT

+∞∑
p=−∞

X(Ω− 2πp

MT
)

×
M∑
k=1

Hk(Ω− 2πp

MT
)Fk(eω) +

M∑
k=1

Ek(eMω)Fk(eω)

where ω = ΩT .
Since the input signal x(t) is spectrally bounded, only pulsations

lying on the interval
[
− π

2T
, π

2T

]
are considered. Considering the

band-limited analysis filters HB
k (ω):

HB
k (ω) =

{
Hk(ω) |ω| ≤ π

2T
0 |ω| ≥ π

2T
.
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Equation (3) becomes thus:

Y (eω) =
1

MT

M−1∑
p=−M+1

X(Ω− 2πp

MT
)

M∑
k=1

HB
k (Ω− 2πp

MT
)

× Fk(eω) +

M∑
k=1

Ek(eMω)Fk(eω)

=
1

MT
X(Ω)

M∑
k=1

HB
k (Ω)Fk(eω) (3)

+
1

MT

M−1∑
p=1

X(Ω− 2πp

MT
)

M∑
k=1

HB
k (Ω− 2πp

MT
)Fk(eω)

+
1

MT

M−1∑
p=1

X(Ω− 2πp

MT
+

2π

T
)

M∑
k=1

HB
k (Ω− 2πp

MT
+

2π

T
)

× Fk(eω) +

M∑
k=1

Ek(eMω)Fk(eω)

Due to the band-limited property of X(ω) and HB
k (ω), we can

easily check that:

HB
k (ω)HB

k (ω +
2π

T
) = 0

and also:
X(ω)X(ω +

2π

T
) = 0

Letting X̃(ω) = X(ω)+X(ω+ 2π
T

) and H̃B
k (ω) = HB

k (ω)+

HB
k (ω + 2π

T
), we finally get:

Y (eω) =
1

MT
X̃(Ω)

M∑
k=1

H̃B
k (Ω)Fk(eω)

+
1

MT

M−1∑
p=1

X̃(Ω− 2πp

MT
)

M∑
k=1

H̃B
k (Ω− 2πp

MT
)Fk(eω)

+

M∑
k=1

Ek(eMω)Fk(eω) (4)

Comparing Y (eω) with the ideal frequency response 1
T
X̃(Ω) that

would be delivered if the signal had been sampled at a rate of 1/T ,
we deduce that the frequency response of the output of the HFB-
ADC is the sum of a distortion term, aliasing terms and a term cap-
turing the effect of quantization noise:

Y (eω) =
1

T
X̃(Ω)T0(eω) +

M−1∑
p=1

1

T
X̃(Ω− 2πp

MT
)Tp(e

ω)

+

M∑
k=1

Ek(eMω)Fk(eω)

where the distortion and the aliasing functions T0(eω) and Tp(eω)
are given by:

T0(eω) =
1

M

M∑
k=1

H̃B
k (Ω)Fk(eω) (5)

Tp(e
ω) =

1

M

M∑
k=1

H̃B
k (Ω− 2πp

MT
)Fk(eω) (6)

In the classical design methods of HFB-ADC, the perfect re-
construction is defined as the condition for which the output is only
a scaled, delayed and sampled version of the input up to the floor
restricted by the quantization noise. This implies that the aliasing
terms should be equal to zero. Mathematically speaking, this condi-
tion requires that:

Tp(e
ω) =

{
ce−ωρ p = 0, ρ ∈ R+

∗ , c ∈ R∗
0 p ∈ {1, · · · ,M − 1}

where ρ is the HFB-ADC overall delay and c is the scale factor.

2.2. Design of the synthesis filters

The classical design methods are based on the resolution of the per-
fect reconstruction equations. If the design step does not take into
account the quantization noise, the synthesis filter function F : ω 7→
F(eω) , [F1(eω), · · · , FM (eω)]T is designed so that it mini-
mizes the following cost function [2]:

C0(F) =
1

2π

∫ π

−π

∣∣T0(eω)− ce−ωρ
∣∣2 dω

+
1

2π

∫ π

−π

M−1∑
p=1

|Tp(eω)|2dω

In practice, it is of interest to keep the quantization noise at a low
level, in addition to the cost function C0. Hence, we rather consider
the cost function which linearly combines the distortion error with
the aliasing and quantization noises [6]:

C(F) =
1

2π

∫ π

−π

∣∣T0(eω)− ce−ωρ
∣∣2 dω +

λ

2π

∫ π

−π

M−1∑
p=1

|Tp(eω)|2dω

+
λ

2π

∫ π

−π

M∑
k=1

|Fk(eω)|2|Ek(eMω)|2dω

=
1

2π

∫ π

−π

∣∣T0(eω)− ce−ωρ
∣∣2 dω +

λ

2π

∫ π

−π

M−1∑
p=1

|Tp(eω)|2dω

+
λσ2

2M2π

∫ π

−π

M∑
k=1

|Fk(eω)|2|dω.

where σ2 = 10
−6r
10 and λ is a regularization term weighting the

quantization and aliasing noises. Let

T(eω) = [T0(eω), · · · , TM−1(eω)]T

and
B(eω) =

[
ce−ωρ, 0, · · · , 0

]T
.

Then C(F) could be written as:

C(F) =
1

2π

∫ π

−π
‖ΛT(eω)−B(eω)‖2dω+

λσ2

2M2π

∫ π

−π
‖F(eω)‖2dω

(7)
where,

F(eω) = [F1(eω),F2(eω), · · · ,FM (eω)]T

Writing (5) and (6) in a matrix format, it is easy to see that :

T(eω) =
1

M
H(

ω

T
)F(eω)
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H( ω
T

) being the M ×M matrix whose (m,n)th element is given
by : [

H(
ω

T
)
]
m,n

= H̃n(Ω− (m− 1)
2π

MT
)

and Λ is the diagonal matrix whose the diagonal elements are equal
to λ, except those indexed by Mk + 1, k ∈ [0, N − 1] which are
equal to 1. Considering a grid of N equally spaced frequencies ωk,
the first integration in (7) can be approximated by the average over
the considered frequencies. Therefore, the problem amounts to min-
imizing:

C(F) =
1

N
‖ΛNHNFN −MBN‖2 +

λσ2

2π

∫ π

−π
‖F(eω)‖2dω

(8)
where:

FN =
[
F(eω1)T , · · · ,F(eωN )T

]T
BN =

[
B(eω1)T , · · · ,B(eωN )T

]T

and the analysis matrix HN is the block diagonal matrix given by:

HN =


H( ω1

T
) 0

H( ω2
T

) 0

0
. . .

H( ωN
T

)


and ΛN is the MN × MN block diagonal matrix with identical
blocks given by Λ. For practical reasons, the synthesis filters are
assumed to have finite impulse responses, i.e.,

Fk(eω) =

L∑
`=1

fk(`)e−ω(`−1), ∀k ∈ {1, · · · ,M} ,

where L is the order of each filter Fk, and {fk(`), ` = 1, · · · , L}
is its corresponding impulse response. Let us designate by fk =
[fk(1), · · · , fk(L)]T the k-th synthesis filter, and definef = [f T

1 , · · · , f T
M ]

T.
The frequency response of the synthesis filters depends linearly on
the time coefficients:

F(eωi) = A(eωi)f

where

A(eωi) = IM ⊗
[
1, e−ωi · · · , e−ωi(L−1)

]T

Hence,
FN = Af (9)

where
A =

[
A(eω1)T, · · ·A(eωN )T]T

Plugging (9) into (8) and using the fact that 1
2π

∫ π
−π ‖F(eω)‖2dω =

‖f‖2 and that f is real, the optimization of (8) with respect to f
yields:

f =

(
1

N
AHHH

NΛ2
NHNA +

1

N
ATHT

NΛ2
NH∗NA∗ + 2λσ2IN

)−1

×
(
M

N
ATHT

NΛT
NB∗N +

M

N
AHHH

NΛH
NBN

)

Note: It has been already shown that a slight oversampling of the
input signal can considerably enhance the performance of the HFB-
ADC [2]. This is equivalent to assuming that the input spectrum
is limited to

[
− 1
T

(1− α), 1
T

(1− α)
]
. The design approach re-

mains the same. The only difference is that H̃n(Ω) is multiplied
by W (Ω) given by:

W (Ω) =

{
1, − (1−α)π

T
< Ω < (1−α)π

T
ε otherwise

3. PROPOSED DESIGN METHOD

The principle of classical HFB-ADC synthesis method is to deter-
mine the synthesis filters that approach in a mean square sense the
ideal synthesis filters that achieve Perfect Reconstruction. Since for
finite filter orders, this approximation could not be sufficiently tight,
this strategy might be not optimal in the sense that it does not maxi-
mize the energy of the distortion compared to the energy of the total
aliasing. Instead of picking the closest filters to the optimal ones,
we select the synthesis filters in such a way to maximize the SNR
defined as (10).

Let us designate by I the set given by I = {1, · · · ,MN},
and Id = {kM + 1, k ∈ {0, 1, · · · , N − 1}} the set indexing the
rows of the matrix HNA that correspond to distortion. Then, Ia =
I\Id is the set indexing the rows of matrix HNA that correspond to
aliasing. Let us denote D and L whose rows are respectively indexed
by Id and Ia. If the number N of the considered frequencies is
too high, one can approximate the distortion and aliasing energies
by a sum instead of an integral sign, thereby yielding the following
expression for the SNR:

SNR =
1
N

f TDHDf
1
N

f TLHLf + σ2f Tf

where Dr = <(D), Di = =(D),Lr = <(L) and Li = =(L).
Maximizing the SNR under the constraint that the distortion energy
is equal to one amounts to solving the following problem:

P : min f T

(
1

N
LT
rLr +

1

N
L T
i Li + σ2ILM

)
f

f T

(
1

NM2
DT
rDr +

1

NM2
DT
iDi

)
f = 1.

The solution of the problem (P ) is given by the following theorem:

Theorem 1. Let A =
(

1
N

LT
rLr + 1

N
L T
i Li + σ2ILM

)
and D =

1
NM2 DT

rDr + 1
NM2 DT

iDi. Denote by λmax the maximum eigen-

value of A−
1
2DA−

1
2 and g its corresponding eigenvector. Then,

the optimal synthesis filter solving problem (P ) is given by:

f = A−
1
2 g/
√
λmax.

4. SIMULATION RESULTS

In this section, we compare the performance of the proposed design
method with that of the classical one with respect to the filter order
and the ADC resolution. In all our simulations, we assume that the
analysis bank consists of M = 4 RLC band-pass filters, and that
an oversampling ratio of 8% is used. For both methods, the number
of frequencies N used in the design step is set to 512. A weighting
factor λ equal to 20 has been chosen in the classical design method.
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SNR =

1
2π

∫ π
−π |T0(eω)|2dω

M−1∑
p=1

1

2π

∫ π

−π
|Tp(eω)|2dω +

M∑
k=1

1

2π

∫ π

−π
|Ek(eMω)|2|Fk(eω)|2dω

(10)

=

∫ π
−π |T0(eω)|2dω

M−1∑
p=1

∫ π

−π
|Tp(eω)|2dω +

M∑
k=1

∫ π

−π

σ2

M2
|Fk(eω)|2dω

(11)
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Fig. 2. Achieved SNR for different synthesis filter orders of the syn-
thesis filter and for ADC resolution of 12 bits

4.1. Filter order

We consider a 4 branch HFB-ADC structure, where the ADC reso-
lution is of 12 bits. Fig. 2 displays the obtained SNR when the order
of the synthesis filters varies from 8 to 64. We note that the proposed
design method achieves almost the maximum performance enabled
by the quantization noise floor when L = 32, whereas the classi-
cal design method allows to reach this level of performance only for
at least L = 64. Fig. 3 shows the SNR with respect to the fre-
quency for both design techniques when the ADC resolution is set
to 16 and L = 32. Note that the proposed method achieves almost
an improvement of 30dB with respect to the classical one.
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Fig. 3. SNR with respect to the input frequency for ADC resolution
of 16 bits and L = 32
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Fig. 4. Achieved SNR for different ADC resolutions for L = 32

4.2. ADC resolution

In a second experiment, we set the order of the synthesis filter to 32
and vary the resolution of the ADC from 2 to 20. We note that if the
ADC has a low resolution, both methods achieve almost the same
SNR. The gap between both design methods is up to 50dB for high
ADC resolutions, which is equivalent to an enhancement of about 8
bits in the overall resolution of the HFB-ADC (Fig. 4).

Also, it has been observed that for both methods, at equal com-
plexity in terms of number of coefficients, the digital filters have sim-
ilar gains. This means that there would not be an additional power
consumption in the digital filters obtained with the presented method
compared to the ones obtained with the classical method.

5. CONCLUSION

In this paper, we have proposed an efficient approach for the de-
sign of Hybrid Filter Banks based A/D converters. Unlike classical
methods which have been till then based on the approximation of
the perfect reconstruction conditions, our method considers instead
the optimization of a SNR based criterion. By relaxing the perfect
reconstruction constraints, our method exhibits much better perfor-
mance while keeping almost the same level of complexity in the dig-
ital part. Moreover our method is a direct method which does not
involve any optimization process.
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