
SIMPLIFIED FLOATING-POINT DIVISION AND SQUARE ROOT

Timo Viitanen Pekka Jääskeläinen Otto Esko Jarmo Takala

Tampere University of Technology
Department of Computer Systems

Tampere, Finland
{timo.2.viitanen, pekka.jaaskelainen, otto.esko, jarmo.takala}@tut.fi

ABSTRACT

Digital Signal Processing (DSP) algorithms on low-
power embedded platforms are often implemented using
fixed-point arithmetic due to expected power and area savings
over floating-point computation. However, recent research
shows that floating-point arithmetic can be made compet-
itive by using a reduced-precision format instead of, e.g.,
IEEE standard single precision, thereby avoiding the algo-
rithm design and implementation difficulties associated with
fixed-point arithmetic. This paper investigates the effects of
simplified floating-point arithmetic applied to an FMA-based
floating-point unit and the associated software division and
square root operations. Software operations are proposed
which attain near-exact precision with twice the performance
of exact algorithms and resolve overflow-related errors with
inexpensive exponent-manipulation special instructions.

Index Terms— Floating-point arithmetic, accelerator ar-
chitectures, fused multiply-add, digital signal processing im-
plementations, low-power design

1. INTRODUCTION

Floating-point computation is widespread in Digital Signal
Processing (DSP). Embedded low-power applications often
use fixed-point numbers, but recent studies suggest that it
is possible to compete with fixed-point arithmetic by paring
down the data width and dropping some features compared
to, e.g., IEEE-754 single-precision floats [1], which are over-
provisioned for most DSP tasks. For instance, in [2], 12-bit
floats were employed on a wireless sensor platform, an ap-
plication where power economy is paramount, and actually
reduced power consumption compared to the 16-bit fixed-
point necessary to perform the same task. Custom floating-
point formats are advantageous because their arithmetic preci-
sion and dynamic range can be modified separately by adjust-
ing the exponent and significand widths, respectively, making
them customizable for the application at hand. In a fixed-
point format both are controlled by the word width.

The robustness of DSP applications to accuracy reduction
was studied in [3]. A suite of five DSP applications ranging

from Discrete Cosine Transform (DCT) to speech recognition
was run using emulated reduced-precision floating-point. The
study found that all of the applications performed well even
when the bit width of the significand was halved. Two appli-
cations could cope with a significand of as few as five bits.
Video decoding and speech recognition applications were
benchmarked in [4] with similar results, in the context of a
design flow from C to custom-width floating-point hardware.

The previous studies have approached the topic using
separate floating-point adders and multipliers. In this paper
we focus on a Fused Multiply-Add (FMA) based architecture
which, as argued in [5], appears to be a more efficient choice
for most applications. A point of particular interest is to what
extent can the software-based division and square root op-
erations associated with FMA, designed for IEEE-compliant
units, cope with these accuracy reductions. Many DSP ap-
plications require the use of square root and division, such as
the square-root Kalman filter, the QR-RLS algorithm and the
Householder transform [6]. Algorithms are often reformu-
lated to avoid the operations altogether, but may consequently
exhibit undesirable features such as overflows and numerical
instability [7]. Consequently, it would be convenient for a
developer to be able to use the operations with reasonable
performance and without expensive dedicated hardware.

This paper explores the effects of simplification on an
FMA-based floating-point unit and is organized as follows:
Section 2 enumerates the advantages of an FMA-based ap-
proach and the available hardware simplifications. Section 3
discusses software-based division and square root algorithms
that avoid overflows and correctly handle special-case inputs
in presence of said simplifications. Section 4 evaluates the
hardware and software effects of the proposed tradeoffs. Sec-
tion 5 is a brief review of related literature, and concluding
remarks follow in Section 6.

2. FUSED MULTIPLY-ADD HARDWARE

An FMA unit evaluates the expression a+ bc without round-
ing the intermediate product bc, and typically does not re-
quire much more hardware to implement than a multiplier.

2707978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

The main advantage of the FMA architecture is the ability to
execute all arithmetic instructions in a single compact unit.
Addition may be emulated simply by multiplying by one, and
multiplication by adding zero. An FMA instruction can be
also used for efficient software-based implementation of divi-
sion and square root, and can replace separate hardware units
for these operations. [5]

Furthermore, many important computations consist of
sums of products, e.g., matrix multiplication or polynomial
evaluation. In particular, multiply-add is an important opera-
tion in many DSP algorithms, e.g., linear filtering and discrete
trigonometric transforms. With such computations an accel-
erated FMA instruction will roughly halve the code size,
improve performance, and reduce rounding errors. For these
reasons, commercial processors such as the Intel Itanium [8],
the AMD Bulldozer [9] and the IBM Cell Broadband En-
gine [10] incorporate FPUs built on an FMA architecture.

As with other FPUs, an FMA unit can be cut down by
narrowing the data width, removing support for subnormal
numbers, and switching to Round-toward-Zero (RtZ) round-
ing. Subnormal numbers are a special case in the IEEE-754
standard for representing very small quantities of less than
2−125 [1], which will not affect the result of most practical
computations. They require siginificant extra logic to sup-
port, e.g., in [5] adding subnormals caused an FMA unit to
grow by 30%.

RtZ rounding is a less obvious tradeoff, producing a more
incremental hardware benefit of, e.g., 15% of the area of a
multiplier unit in [3] while doubling the maximum round-
off error of each basic arithmetic operation from ±0.5ulp to
±1ulp. Moreover, as a final measure, the ’fused’ property of
the FMA could be dropped, reducing it into a plain multiply-
adder. Such an unit would forego the accuracy benefit of
FMA, but exhibit further improved area and performance. It
should be noted that some FMA architectures are difficult to
reconcile with this idea, for instance [5], where the addition
is inserted into the multiplier CSA tree. Furthermore, this re-
duction only makes sense when using RtZ rounding, which
requires no extra logic between the operations.

3. SOFWARE-BASED DIVISION AND SQUARE
ROOT OPERATIONS USING FMA

3.1. Division

Computation of FMA-accelerated software division a/b usu-
ally starts with a fast approximation of the reciprocal of the
divisor, y ≈ 1/b. This can be performed by means of, e.g,
a small lookup table. After this, one approach is to approx-
imate the result by multiplying a × y, and then iteratively
refine the approximate result. This can be done by a Newton-
Raphson iteration or a Goldschmidt power series iteration, the
difference being that Goldschmidt makes no reference to the
original inputs, allowing rounding errors to accumulate. Al-

gorithm 1, paraphrased from [11], is an example of this ap-
proach. It originally performs the final iteration in double-
precision in order to attain a correctly rounded result.

Algorithm 1: DivideFast
Data: Single-precision float dividend a and divisor b
Result: The quotient a/b
begin

a′, b′, c←− InitializeDivision(a, b)
y ←− ReciprocalApproximation(b)
q0 ←− a′ · y; e←− 1− b′ · y
q1 ←− q0 · e+ q0; e1 ←− e · e
q2 ←− q1 · e1 + q1
q′2 ←− MultiplyByPowerOfTwo(q2, c)
return q′2

Another approach is to estimate 1/b by means of Gold-
schmidt iterations, and then use a single Newton-Raphson
iteration to compute the quotient while compensating for
rounding errors. An example of this approach is the di-
vision procedure used on the Intel Itanium processor [8].
The original algorithm computes four successively more ac-
curate reciprocal approximations y1...y4 with Goldschmidt
iterations for a total of 11 FMA operations. We consider
variations of the algorithm that are reduced to one and two
iterations, which require 5 and 7 operations, respectively. The
two-iteration version is shown in Algorithm 2.

Algorithm 2: DivideSlow
Data: Single-precision float dividend a and divisor b
Result: The quotient a/b
begin

a′, b′, c←− InitializeDivision(a, b)
y0 ←− ReciprocalApproximation(b)
e←− 1− b′ · y0
y1 ←− y0 · e+ y0; e1 ←− e · e
y2 ←− y1 · e1 + y1
q ←− a′ · y2
r ←− b′ · q + a′

Q←− r · y2 + q
Q′ ←− MultiplyByPowerOfTwo(Q, c)
return Q′

Special case handling and large exponents are points of
difficulty in this class of algorithms. For instance, computing
1/∞ should result in 0, but Algorithm 2 without preprocess-
ing would attempt to subtract ∞ − ∞ when evaluating y1,
and, therefore, output a Not-a-Number special case. The Ita-
nium handles special cases by branching, and overflows by
advising developers to use extended-precision register floats.

Branches are expensive especially on VLIW architectures
which are popular in DSP. Moreover, an extended-precision

2708

format would be counterproductive when the objective is to
decrease the floating-point precision. Therefore, we propose
an alternative system that includes preprocessing and post-
processing steps which are cheap to implement on hardware
as single-cycle special instructions.

The preprocessing step takes advantage of the fact that
significands in division can be computed separately from ex-
ponents. The divisor and the dividend can, therefore, be mul-
tiplied by any power of two without affecting the significand
computation of the final result. Since the overflow problems
are associated with large exponents, the preprocessing step
normalizes the inputs a, b such that:

a′ = a× 2i, 1 ≤ a′ < 2

b′ = b× 2j , 1 ≤ b′ < 2.

The postprocessing step adjusts the exponent of the com-
puted quotient to reverse the earlier normalization:

a/b = (a′/b′)× 2i−j .

This step can be implemented as a multiply-by-power-of-
two instruction which may have wider applicability. Both
steps involve mostly exponent manipulation, and adjust the
significand only to zero it in order to output a special-case
float. They are, therefore, cheap to implement on hardware.
A disadvantage of this scheme is the need to store the scaling
factor 2i−j , increasing pressure on the register file.

Special case inputs are handled by passing the corre-
sponding special case as the scaling term. The preprocessing
stage can zero the exponents as normal. The resulting com-
putation will produce a meaningless small number with the
correct sign, which the scaling term converts into the ex-
pected special case output. Likewise, due to the orthogonal-
ity of significand and exponent calculation, the preprocessing
instruction can detect over- and underflows, and output a
suitable scaling term.

3.2. Square Root

The overflow and special case issues in the square root oper-
ation can be handled in similar fashion as in division, except
that the significand computation is sensitive to the parity of
the exponent, that is, the result significand does not change as
long as the result is multiplied by a power of four. Therefore,
the input is normalized to the range [1, 4) with a similar pre-
processing step and identical postprocessing step compared
to division:

a′ = a× 22i, 1 ≤ a′ < 4
√
a =
√
a′ × 2−i.

A square root algorithm paraphrased from [11] is shown
in Algorithm 3. It consists of a single Goldschmidt iteration

to approximate the inverse square root of an input, followed
by a Newton-Raphson iteration that generates the final output.

Algorithm 3: SquareRoot
Data: A single-precision float a
Result: The square root of a
begin

b′, c←− InitializeSquareRoot(b)
y0 ←− InverseSquareRootApproximation(b)
g ←− b · y; h←− 1/2 · y
r ←− 1/2− h · g
g1 ←− g · r + g; h1 ←− h · r + h
d←− g1 · g1 + b
g2 ←− h1 · d+ g1
g′2 ←− MultiplyByPowerOfTwo(g2, c)

return g′2

4. EVALUATION

4.1. Accuracy

The accuracy of the proposed FMA-based software opera-
tions was evaluated by simulation. Square root takes only
a single operand and, therefore, it can be verified with ex-
haustive search over all possible inputs. The division algo-
rithms were evaluated by dividing 10, 000, 000 randomly cho-
sen pairs of floats using software emulation, and comparing
the results to the correctly rounded quotient. The results are
shown in Table 1.

As expected, the plain multiply-adder suffers an accuracy
hit compared to the FMA. Interestingly, in DivideSlow further
Goldschmidt iterations after the first increase the average er-
ror; therefore the only reasonable algorithms for such an unit
are those with five operations.

Notably, the proposed algorithms require only five multiply-
add operations to achieve reasonable results, while an exact
algorithm using an IEEE-compliant FPU requires 11. For
example, if only 10% of arithmetic operations required by
an application were divisions, this would reduce the final
instruction count by more than one-fourth.

A point of interest is whether the operations are accurate
enough to comply to the OpenCL Embedded Profile specifi-
cation [12], which specifies error bounds for square root and
division instead of exact results. The bounds are ±3ulp and
±3.5ulp, respectively. All algorithms except for DivFast con-
form to these limits. The advantage of DivFast is that several
of its component operations can be performed in parallel, re-
ducing the runtime of some programs.

Possibly the closest available point of comparison is the
MASS arithmetic library for the IBM Cell processor which
is built around a four-way SIMD FMA unit with RtZ round-
ing and disabled subnormals, similarly to the ’FMA’ column

2709

Table 1. Accuracy and performance characteristics of each algorithm. Accuracy is measured with 10,000,000 random float
pairs for division and with exhaustive search for square root. Errors are reported relative to the correctly rounded (RtZ) result.

FMA MA
Procedure DivFast DivSlow 1 DivSlow 2 Sqrt DivFast DivSlow 1 DivSlow 2 Sqrt

Avg. Error (ulp) 0.70 7.0× 10−5 4.0× 10−7 0.13 0.50 0.41 0.56 0.26
Error Bounds (ulp) -3 .. 0 -1 .. 0 -1 .. 0 -1 .. 1 -2 .. 4 0 .. 2 0 .. 2 -1 .. 0

Error Rate 60% < 1% < 1% 13% 43% 40% 53% 26%
OpenCL EP compliant no yes yes yes no yes yes yes

FMA count 5 5 7 7 5 5 7 7
FMA latency 3 5 6 5 3 5 6 5

Latency (DFMA = 6) 21 33 39 33 21 33 39 33
Throughput w/ 2 FMA 0.4 0.4 0.29 0.29 0.4 0.4 0.29 0.29

Table 2. Synthesis results on a Xilinx Virtex-6 FPGA.
The baseline is an IEEE-compliant single precision multiply-
adder with a 23-bit significand and 8-bit exponent.

Unit Cycle (ns) Slices LUTs
FMA, subnormals, RtN 20.123 592 1872
FMA, RtN 15.119 492 1523
FMA 14.353 420 1276
MA 14.107 372 1011
FMA, -1 sig. bit 14.007 387 1104
FMA, -2 sig. bits 14.440 416 1254
FMA, -3 sig. bits 13.963 328 944

in Table 1 [10]. It achieves looser error bounds than the pro-
posed one on the ’MA’ unit. The throughput is similar, as-
suming that the proposed one can also exploit four parallel
execution units and sufficient registers to utilize them. The
Cell can also be used with the SIMDmath library which is
more accurate, but slower by a factor of four. [13, 14]

4.2. Hardware Benchmark

In Section 2, we suggested that reducing an FMA unit into a
non-fused multiply-adder may be an useful technique to trade
precision for hardware complexity. In order to test this hy-
pothesis, we prepared hardware units using a single-precision
multiply-adder from Bishop [15] as a base and synthesized
them on a Xilinx Virtex-6 FPGA. Automatic register retim-
ing produced very different results depending on the original
placement of the pipeline registers, and, therefore, pipelining
was omitted entirely in the interests of a fair benchmark. Re-
sults are shown in Table 2.

Disabling subnormal numbers and rounding produce ben-
efits in line with the literature. The multiplier-adder optimiza-
tion produces an area reduction similar to a reduction in sig-
nificand width between 2 and 3 bits.

5. PRIOR WORK

The work presented here was related to the use of reduced-
precision floating-point arithmetic in low-power digital signal
processing. There is some literature concerning the use
of reduced-precision floats [2, 3, 4] and fused multiply-
adders [5] in this setting. The present paper combines these
ideas by considering the effects of reduced precision on a
multiply-adder datapath, and especially the associated soft-
ware operations. A system is proposed for software division
and square root which, e.g., inexpensively resolves overflow-
related errors without resorting to a wider floating-point for-
mat. The errors are associated with inputs close to the limits
of the dynamic range, and become relevant when the dynamic
range is customized to the minimum necessary for the appli-
cation. In addition, an incremental hardware optimization is
proposed.

6. CONCLUSIONS

This paper evaluated a multiply-adder based, reduced-precision
floating-point unit for embedded digital signal processing.
Non-fused multiply-addition was proposed as one option for
trading accuracy for efficiency. The tradeoff appears to save
more space than would be consumed by adding one or two
bits of significand accuracy, which would suffice in most
situations to compensate for the lost accuracy.

Software-based division and square root operations were
proposed that handle special cases without branching (thus
are efficient on common VLIW architectures), avoid over-
flows without resorting to a higher-precision format, and ex-
hibit close-to-exact accuracy while outperforming exact algo-
rithms by a factor of two. The software-based operations are
more accurate than the MASS library on the IBM Cell pro-
cessor, which is similarly structured except for the multiplier-
adder tradeoff, and ideally reach a similar or higher through-
put.

Acknowledgements. This work was funded by the
Academy of Finland (funding decision 253087).

2710

7. REFERENCES

[1] Standard for Floating-Point Arithmetic, IEEE Std. 754,
2008.

[2] J. Janhunen, P. Salmela, O. Silvén, and M. Juntti,
“Fixed- versus floating-point implementation of MIMO-
OFDM detector,” in Proc. IEEE Int. Conf. Acoustics,
Speech and Signal Processing, Prague, Czech Republic,
May 22–27 2011, pp. 3276–3279.

[3] J. Tong, D. Nagle, and R. Rutenbar, “Reducing power
by optimizing the necessary precision/range of floating-
point arithmetic,” IEEE Trans. VLSI Systems, vol. 8,
no. 3, pp. 273 –286, June 2000.

[4] F. Fang, T. Chen, and R. Rutenbar, “Floating-point bit-
width optimization for low-power signal processing ap-
plications,” in IEEE Int. Conf. Acoustics, Speech, and
Signal Processing, vol. 3, 2002, pp. III–3208.

[5] T. M. Bruintjes, K. H. G. Walters, S. H. Gerez,
B. Molenkamp, and G. J. M. Smit, “Sabrewing: A
lightweight architecture for combined floating-point and
integer arithmetic,” ACM Trans. Archit. Code Optim.,
vol. 8, no. 4, pp. 41:1–41:22, Jan. 2012.

[6] S. Haykin, Adaptive Filter Theory. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1996.

[7] G. H. Golub and C. F. V. Loan, Matrix Computations,
3rd ed. The Johns Hopkins University Press, 1996.

[8] B. Greer, J. Harrison, G. Henry, W. W. Li, and P. Tang,
“Scientific computing on the Itanium processor,” Scien-
tific Programming, pp. 329–337, 2002.

[9] M. Butler, L. Barnes, D. Sarma, and B. Gelinas, “Bull-
dozer: An approach to multithreaded compute perfor-
mance,” Micro, IEEE, vol. 31, no. 2, pp. 6–15, March-
April 2011.

[10] S. Mueller, C. Jacobi, H.-J. Oh, K. Tran, S. Cottier,
B. Michael, H. Nishikawa, Y. Totsuka, T. Namatame,
N. Yano, T. Machida, and S. Dhong, “The vector
floating-point unit in a synergistic processor element of
a CELL processor,” in Proc. IEE Int. Symp. Comput.
Arithmetic, Cape Cod, MA, USA, June 27–29 2005, pp.
59–67.

[11] P. Markstein, “Software division and square root us-
ing Goldschmidts algorithms,” in Conf. Real Numbers
and Computers, Schloß Dagstuhl, Germany, Nov. 15–
17 2004, pp. 146–157.

[12] A. Munshi, “The OpenCL specification version: 1.2
document revision: 15,” Khronos, 2011.

[13] “Accuracy information for the MASS li-
braries for Cell/B.E. SPU,” Tech. Rep.,
2009. [Online]. Available: http://www-
01.ibm.com/support/docview.wss?uid=swg27009549

[14] “Performance information for the MASS li-
braries for Cell/B.E. SPU,” Tech. Rep.,
2010. [Online]. Available: http://www-
01.ibm.com/support/docview.wss?uid=swg27009548

[15] D. W. Bishop, “VHDL-2008 support library,” 2011.
[Online]. Available: http://www.eda.org/fphdl/

2711

