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ABSTRACT

A radar sensor can capture the distance and angle of an
object. Mapping the radar distance and angle information
to the coordinates of a video frame accelerates the speed of
object identification. The distance information is used to cal-
ibrate the size of an object to help the recognition. To achieve
real-time performance, we use only five center of gravity
points (COG) and four feature sets. Two feature sets measure
the displacement of the upper and lower body COG in the
vertical and horizontal directions. The other two feature sets
quantize the upper and lower body angular change rate. The
simulation results show that our proposed approach achieve
98.02% to 80.20% recognition rates for various postures and
actions in the KTH and ISIR databases.

Index Terms— posture recognition, action analysis, radar
and vision fusion, center of gravity, video surveillance.

1. INTRODUCTION

The human posture and action analysis is an important re-
search area in various applications such as pedestrian identi-
fication in vehicles, video surveillance, medical diagnostics,
and human machine interaction systems [2]. Radar sensors
become more and more popular in vehicles and medical de-
tections for human breathing and heartbeat [1]. Human pos-
tures may affects the frequency of breathing and heartbeat.
Currently there are few literatures on combining radar and
vision sensors for human posture recognitions for vehicle or
medical applications.

Several posture recognition approaches have been pro-
posed. Oliver et al. [3] use hidden Markov models (HMMs)
and a trajectory feature to develop a visual surveillance sys-
tem to model and recognize human actions. Wren et al. pro-
pose a Pfinder system for tracking and recognizing human be-
havior based on a 2-D blob model [4]. Juang et al. [10] apply
consecutive frame difference to extract silhouette, then use
significant points in body silhouette to analyze human action.
Hsieh et al. [5] propose deformable triangulation and cen-
troid context for human action analyzation. Although these
types of schemes are useful to analyze human actions, most
of them have high computation complexity.

In this paper, we propose a real-time feature extraction
algorithm that analyzes human actions by the radar and vi-
sion sensors. We adopt the distance and angle information
from the radar sensor to accelerate the object identification in
the vision sensor. The proposed approach adopts a centroid
context based posture and action recognition using only five
center of gravity points (COG) and four feature sets. Then
we compute the COG of the human body and set this COG
as the origin. With the vertical and horizontal lines through
the origin, the body is divided into four parts and the COGs
in each part are computed. Two feature sets measure the dis-
placement of the upper and lower body COG in the vertical
and horizontal directions. The other two feature sets quantize
the upper and lower body angular change rates that can be
used to identify the human actions.

The remainder of the paper is organized as follows. In
Section II, we present the proposed depth-based posture
recognition system by radar and vision fusion. The model-
based feature sets and the posture classification scheme are
shown in Section III. In Section IV, the experiment results and
computational complexity analysis are presented. Finally, a
conclusion is drawn in Section V.

2. A DEPTH-BASED POSTURE RECOGNITION
SYSTEM WITH RADAR AND VISION FUSION

Our proposed depth-based posture recognition system with
radar and vision fusion is shown in Fig. 1. The radar and
vision sensors are setup to have the same distance to an ob-
ject. The radar sensor detects objects with their distance and
angle information. The camera sensor translates the distance
and angle obtained from the radar to coordinates in the video
frames that are used as references to detect objects. After the
object is detected and extracted, we use the distance informa-
tion to adjust the parameters in the recognition system. Then
the model-based feature extraction and posture classification
are adopted to identify the postures.

The radar sensor used in our system is LMS100-10000
with a maximum detection distance of 20 meter and max-
imum scanning angle of 270 degree. The radar measured
distance r and angle θ are corresponding to the coordinates
(xr,yr)=(rcosθ, rsinθ) in the radar domain. During calibra-
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Fig. 1. Overall flow of the radar and vision based posture
recognition system.

tion, we measure multiple radar vertical coordinates yr and
multiple corresponding video frame vertical coordinates yv .
The relation between yr and yv can be expressed as below
and Fig. 2(a).

yv = a× ln(yr) + b, (1)

where a and b are constants. By using the similarity between
an optical triangle and an image triangle, the relation between
xr and xv can be expressed as below.

xv = (1− yr

c
)× d× xr, (2)

where c and d are constants.
After identifying the (xv ,yv) in the video frame, we use

the mapped coordinate as the center of a limit search region.
Then we apply color saliency in this limited search region to
find the silhouette of the object. Since the size of an object
in a video frame depends on the distance of the vision sensor,
we use the distance obtained from radar sensors to adjust the
parameters for recognition. An example of two objects with
measured radar distances and angles and the corresponding
video frame coordinates is shown in Fig. 2.

(a) (b)

Fig. 2. (a) Radar and the y (yv(vertical index), yr(horizontal
index)) mapping curve, (b) an image example of two ob-
jects with radar measured distance (4.5m, 6m) and angle
θ(79, 98.75) in degree.

In order to reduce the computational complexity, we pro-
pose a centroid context based posture and action recognition
approach using only five center of gravity points (COG) and

four feature sets. Two feature sets measure the displacement
of the upper and lower body COG in the vertical and hori-
zontal directions. For example, Fig. 3 shows the variation of
vertical height at five different postures. When a human being
is in the stand posture, the vertical height value is the highest
and the values of vertical height decrease in the other pos-
tures. The other two feature sets quantize the upper and lower

(a) (b) (c) (d) (e)

Fig. 3. Variation of height (H) at four different postures: (a)
stand, (b) sit, (c) squat, (d) Bending, and (e) laying.

body angular change rate. With the feature sets and a classifi-
cation model, our proposed approach is able to recognize five
different static postures including stand, laying, bend, sit and
squat and two actions, walking and handwaving.

3. MODEL-BASED FEATURE EXTRACTION AND
CLASSIFICATION

According to the concept that human body has different fea-
tures in different postures, we propose a model-based feature
extraction method. In this work, we use the trunk ratio and
the upper and lower body angles to distinguish postures. The
proposed method is simple and fast that can be applied in real-
time applications.

The center of gravity of the human body is used as a fea-
ture point in many posture recognition methods. The follow-
ing equation shows the computation of COG of a human body
region from the extracted silhouette.

(Xcog, Ycog) = (
1
N

N∑
xi=1

xi,
1
N

N∑
yi=1

yi), (3)

(xi, yi) ∈ human body region

where (Xcog, Ycog) is the x and y coordinates of the com-
puted COG. When the body region is the extracted human
body silhouette, we call this as the origin COG and is de-
noted as COGo. From this origin COG, we divide the body
into four parts using the vertical and horizontal lines passing
through the COGo.

Then we compute the COGs in each part and they are de-
noted as COG1, COG2, COG3 and COG4.

3.1. Definition of the Features

In this subsection, we extract three feature ratios R1, R2 and
R3 respectively. At first, we use COGo, COG1, and COG2
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to construct an upper triangle then use COGo, COG3, and
COG4 to construct a lower triangle. From these two trian-
gles, we define three values W1, W2, and H as follows.

W1 = |Xcog1 −Xcog2| (4)
W2 = |Xcog3 −Xcog4|, (5)

where

H =

√
(
Xcog12 −Xcog34

2
)2 +

Ycog12 − Ycog34

2
)2. (6)

The W1 is the horizontal distance of the COG1 and
COG2, and W2 is the horizontal distance of the COG3 and
COG4. The H is the Euclidean distance between the mid-
point of COG1 and COG2 and the midpoint of COG3 and
COG4. According to these values, we define the three feature
ratios R1 = H

W1
, and R3 = W1

W2
. R1 is used to distinguish

postures including the stand, sit, squat and laying. R3 is used
to identify the bend posture. Fig. 4(a) shows an example of
the body feature values definition. Fig. 4(b) shows the pos-

(a) (b)

Fig. 4. (a) Human body feature value definition, (b) Postures
distribution of different ratio value.

tures distribution of different R1 and R3 values and it shows
that the stand, sit, squat, laying and bending can be differen-
tiated from these two values. Next, we present angle features
to distinguish action postures of handwaving and walking.
The upper COG1 and COG2 change their positions for a
human handwaving action. For a walking action, the lower
COG3 and COG4 change their positions.

Here we define two angle features A1 and A2 based on
the law of cosines as below. We can find A1 and A2 as shown
in Fig. 4(a). A1 is the bottom angle of the triangle in the
upper body. The A1 value changes up and down repeatedly
during handwaving. A2 is the top angle of the triangle in the
lower body and the A2 changes repeatedly for the walking.
Fig. 5(a)(b) shows the angle change rate versus frame for
handwaving and walking.

3.2. Threshold Definition and Computation

In this paper, we use a static camera to observe human pos-
tures. Human have different ground truth size in different
depth distance in the static scenes. Fig. 6 shows the H ,

(a) (b)

Fig. 5. Angle change rate versus frame for: (a) handwaving,
and (b) walking.

W1, and R1 values at different distances. The decreasing of
the H values is larger than the W1 values when the distance
increases. The R1 has higher values when the distance is
smaller than five meter then the value becomes much smaller
after this distance. In order to reduce the scaling problem for

(a) (b)

Fig. 6. Height, width and R1 comparison in different dis-
tances: (a) Height (H) and width (W1) variation in different
distances, and (b) R1 variation in different distances.

these features, we restrict the initial posture in a test video is
the stand posture and use it as a reference. We also use the
distance obtained from radar to adjust the classification pa-
rameters. When the stand posture have the highest R1 value
and the R1 value changes depending on postures. At first,
we perform a recognition step for a static stand posture. If
this stand posture persists static with TR seconds that TR is 3
here, then we compute the current R1 value for the stand po-
sition. Based on the computed R1 value, we can define stand
threshold TS = R1. A human body has very largeW1 andW2

values and a small H value at the laying posture as shown in
Fig. 3(e). In this paper, we assign the laying posture threshold
TL is 0.5. Then we define an equation to calculate a threshold
TSS = (TS − TL) ∗ 4

5 + TL to distinguish the sit and squat
postures. In order to distinguish the bend posture, we use the
R3 feature. The reason of using the R3 feature is beacuse the
upper W1 is larger than W2 in the bend posture. Based on

this feature, we assign the bend threshold TB is
3
2

. We adopt
these features and thresholds to model the recognition flow.
The recognition flow is shown in Fig .7.
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Fig. 7. Recognition flow of the proposed system.

4. EXPERIMENTAL RESULTS AND
COMPUTATIONAL COMPLEXITY ANALYSIS

We evaluate our approach on the KTH database [7] and ISIR
database [11]. We also adopt Hsieh et al [5]’s approach for
comparison.

The KTH human action dataset, originally created by [7],
consists of 600 videos (160 × 120) with 25 persons perform-
ing human action in four different scenarios: outdoors s1, out-
doors with scale variation s2, outdoors with different clothes
s3, and indoors s4. Due to the background limitation, we per-
form the experiments for the walking sequence here. The re-
sult is shown in Fig. 8. It shows that the proposed method can

Fig. 8. Experimental results from the KTH video sequence
with walking posture.

recognize most walking sequences and a recognition rate of
96% is obtained. A sequence database ISIR comprising eight
actions is considered: crouch down, stand up, sit down, sit
up, walk, bend down, get up from bending, and jump. Vari-
ous viewpoints are acquired for each action. The face, 45°and
90°views are captured while others are synthesized from the
recorded sequences already by symmetry. The number of the
test images for the squat postures is 165 and the correct rec-
ognized number is 162. The recognition rate is 98.2%. The
number of the test images of the sit posture is 112 and the
correct recognized number is 102. The recognition rate is
91.07%. The number of the test images of the bend posture is
126 and the correct recognized number is 101. The recogni-
tion rate is 80.20%. The recognition rate results are shown in
Fig. 9.

The experimental results show that our proposed method

Fig. 9. Experimental results from the ISIR database with
squat, sit, and bend postures.

has good recognition rate at squat and sit postures. For the
bend postures, we have lower recognition rate because the
direction of bend is face to the camera.

The computation complexity of the proposed approach,
Chen’s [5], and Juang’s [10] methods are listed in Table I.
The parameter n means the number of pixels in an image; the
parameter k denotes the number of contour points in a sil-
houette and the parameter t means the number of triangle in
a silhouette. From Table I, we show that the required arith-
metic operations of our proposed approach are lower than the
other two compared methods. Especially the number of mul-
tiplication and division operation required in our method is
independent of the image size and a constant. The numbers in
parentheses in the Table I are the gate counts when the value
of n, k, and t are 131648, 895, and 58 respectively. It shows
that our approach use the least amount of add/subtract opera-
tions and the multiplication/division operation is significantly
lower than others.

Table 1. Computational Complexity Analysis
Method operation numbers of (+, -) operation numbers of (*, /)

Our proposed 5n + 13 (658253) 29 (29)
Hsieh et al. [5] 5n + 10k + 12t (667886) 2n + 4k + 12t (267572)
Juang et al.[10] 12n + 26k (1603046) 4n + 3k + 2 (529279)

n: the number of pixels in a image.
k: the number of contour in a silhouette.

t: the number of triangle.

5. CONCLUSION

We have proposed a model-based feature recognition scheme
to analyze human postures. The proposed method using five
COG points to compute the ratio variation of vertical and hori-
zontal direction and the upper and lower body angular change
rate. With the feature sets, we present a classification flow
for static and action postures. The proposed method only
uses five feature sets to achieve high recognition rates. This
method not only has low computation complexity but also has
low implementation cost so it is suitable to be applied in real-
time handheld devices.
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