
ARCHITECTURES FOR DIGITAL FILTERS USING STOCHASTIC COMPUTING

Yun-Nan Chang

National Sun Yat-Sen University
Department of Computer Science

and Engineering
Kaohsiung, Taiwan

Keshab K. Parhi

University of Minnesota
Department of Electrical and

Computer Engineering
Minneapolis, MN, USA

ABSTRACT
Stochastic computing has recently gained attention due to its
fault-tolerance property. In stochastic computing, numbers
are represented by probabilities of sequences. This paper
addresses implementation of inner products and digital fil-
ters using stochastic logic. Straightforward implementations
of stochastic inner products and digital filters lead to sig-
nificantly large output error. To overcome this, this paper
proposes a novel scaling method for efficient stochastic logic
implementations of inner products and digital filters. By in-
corporating the filter coefficients into the probability of the
selection signals of the multiplexors, the proposed weighted
summation circuit can achieve better signal scaling with lower
cost than the one derived from a traditional structure. This
paper also presents how to vary the seeds in stochastic filters
in order to reduce the correlation. Implementing IIR filters
using stochastic logic limits possible pole locations. To over-
come this, a new stochastic IIR filter structure is presented
that includes a binary multiplier and stochastic-to-binary and
binary-to-stochastic converters. Our experimental results
show that the proposed architecture for the inner-product unit
can lead to more than 12 times reduction in the error-to-power
ratio. The stochastic FIR filters can perform the desired fil-
tering function, but their accuracy degrades with the increase
of filter order. The direct-form stochastic IIR filters may fail
for large filter orders, but their performance can be improved
by using cascade-form filter architecture.

Index Terms— Stochastic logic, stochastic filter, stochas-
tic FIR filter, stochastic IIR filter, scaling.

1. INTRODUCTION

Stochastic computing (SC), first proposed several decades
ago [1], has recently regained a lot of attention mainly due to
its fault-tolerance capability which is a key requirement for
the deep sub-micron technology. Different from the ordinary
binary computing, this unconventional approach represents
numbers using the probability value of bit-streams. Very low-
cost circuits that are highly resistant to manufacturing process
variations and soft errors can thus be designed by stochastic

logic. However, the stochastic circuits may also suffer from
long processing latency and accuracy degradation. Therefore,
in the past, SC applications have been limited to the fields
of neural networks [2] and control machines [3]. In recent
years, several researches illustrate that SC can also be applied
successfully in certain image processing [4], [5] and error-
control coding [6] applications. The success of these new
applications is due to the fact that they demand some special
functions, which are very complex to implement using bi-
nary logic, but can be approximated efficiently by stochastic
logic. In order to explore more SC opportunities, this pa-
per addresses the SC implementations of one broad field of
applications: digital filters.

The remainder of this paper is organized as follows. Since
most digital filters are based on the inner-product function,
Section 2 first describes how to realize this function based on
general SC components, followed by our proposed modified
SC architecture which can improve the performance. Section
3 discusses the design of stochastic FIR filters. Implementa-
tion of stochastic IIR filters is addressed in Section 4. Finally,
some conclusions are given in Section 5.

2. DESIGN OF SC INNER-PRODUCT UNIT

Inner-products are key components of FIR and IIR digital fil-
ters. The design of the inner-product unit is quite straight-
forward as it contains several multiplication and addition op-
erations. Fig. 1 shows some of the most fundamental build-
ing blocks used in SC circuits, which include the XNOR gate
as the SC multiplier, the multiplexor as the scaled adder, and
the linear-feedback-shift-register (LFSR) and a comparator as
the stochastic number generator (SNG). Therefore, an inner-
product module can be built by using these units. Fig. 2(a)
shows the circuit diagram of an inner-product module for in-
put vectors (x0, x1) and (a0, a1) based on the components
shown in Fig. 1. We assume that all the binary inputs are
converted into stochastic sequences.

Due to the nature of SC, the number represented by the
probability of a sequence cannot be greater than one. There-
fore, the SC adder shown in Fig. 1 has an implicit scale fac-

2697978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

A: 0 1 1 1 1 1 0 1

(PA=¾, NA=½)

B: 0 0 0 0 0 0 0 0

(PB=0, NB=-1)

C: 1 0 0 0 0 0 1 0,

(PC=¼, NC=-½)

S: 0 0 1 1 1 0 0 0

(PS=3/8, NS=-¼)

C: 1 1 0 0 0 1 0 1

0

1

A: 0 1 1 1 1 1 0 1

(PA=¾, NA=½)

B: 0 0 0 0 0 0 0 0

(PB=0, NB=-1)

(a) Signed multiplier: NC=NAxNB

(b) Adder: NS=(NA+NB)/2

comparator

Binary number

(c) Stochastic Number Generator (SNG)

Fig. 1. The basic SC arithmetic units.

tor of 1
2 such that the sum of the inputs will be automati-

cally scaled down by two. The output of the inner-product
module shown in Fig. 2(a) will equal 1

2 (a0x0 + a1x1) whose
magnitude is less than max(|x0|, |x1|). For the summation
of more stochastic numbers, it can be expected the sum will
become even smaller due to the implicit scaling effect. For
small stochastic numbers, their variance may increase due to
the imprecision of SC caused by insufficient sequence length
or signal correlation. Therefore, to enhance the scaling effect,
this paper proposes an alternative SC logic implementation of
inner-product when the vector (a0, a1) is a constant.

SNG0.5

SNG

SNG

(x0+1)<<1 SNG

SNG

SNG

sign(a0)

sign(a1)

10

0

aa

a

+

SNGSNG

y y

(a) (b)

(x1+1)<<1

(a0+1)<<1

(a1+1)<<1

(x0+1)<<1

(x1+1)<<1

Fig. 2. The circuit diagram of inner-product module for in-
put vectors of size two built by (a) general SC units and (b)
proposed weighted-summation architecture.

Fig. 2(b) shows our proposed inner-product circuit based
on the uneven weighted multiplexors. Here the probability
of the selection signal of the multiplexor is no longer fixed at
0.5. If a0 and a1 are constants, this control signal probability
will be set to |a0|

|a0|+|a1| whose value depends on the relative
magnitude ratio of the coefficients. Since the constants a0
and a1 can be negative, the input sequences which repre-
sent the other vector may have to be inverted. The output of
our proposed inner-product circuit shown in Fig. 2(b) equals

|a0|
|a0|+|a1|sign(a0)x0 + (1 − |a0|

|a0|+|a1|)sign(a1)x1 which can
be rewritten as 1

|a0|+|a1| (a0x0 + a1x1). Compared with the
summation result of Fig. 2(a), the proposed circuit scales
the result better according to the magnitude of the constants.
When |a0| + |a1| is smaller than one, it will even scale-up
the result. The scaling is similar to the use of Horner’s rule in
bit-serial implementations [7].

In addition to better signal scaling, the other advantage of
the proposed design is the reduced number of SNGs required.

Furthermore, the input sequence will pass through fewer lev-
els of gates leading to less signal variation due to the SC op-
erations. Table 1 compares the accuracy of results for differ-
ent sizes of input vectors using the metric of error-to-signal
power ratio. This ratio is derived from dividing the average
output error power by the average output signal power. The
error ratio is compared with the floating-point implementa-
tion results. For each vector size, 1000 different vector pairs
are tested. The input vectors are generated randomly. The se-
quence length for each number is 1024. All the seeds used
in SNG are different in order to reduce the correlation of
stochastic sequences. As shown in this table, our proposed
circuit has significantly less error than the other built from the
basic SC components.

Table 1. Error comparison of two inner product circuits.

Vector Size 2 4 6 8
Proposed Design 0.0033 0.0040 0.0034 0.0052
Conventional Design 0.1783 0.0934 0.1206 0.0656

3. FINITE IMPULSE RESPONSE FILTER DESIGN

A general M+1-tap finite-impulse response (FIR) filter is rep-
resented by y[n] = b0x[n] + b1x[n− 1]+ · · ·+ bMx[n−M]
which can be realized based on the proposed inner-product
module design. The only exception of the filter to the inner-
product module is that one of the input vectors corresponds to
the filter coefficients while the other input vector is obtained
through the delay line. Here we assume the filter input is in
the binary form although it may be in the bit-stream form if
it comes directly from a sigma-delta AD converter. Fig. 3
shows the circuit diagram for the N-tap filter whose output is
the scaled filtering result y[n]/

∑M
i=0 |bi|. The scaling of the

FIR output will not alter the relative frequency contents of the
signal.

There are two alternative approaches to generate the de-
layed version of the input signals. Fig. 3(a) first converts
the input into the stochastic bit-stream, which then will pass
through the delay line. In Fig. 3(b), the input signal first
passes through the delay line, and then each of the signal
from the delay line is converted separately to the stochastic
bit sequence. Although it seems that the latter one will re-
quire more SNG modules, it should be noted that the total
memory elements used to implement the delay line of these
two approaches are different. In Fig. 3(a), each delay tap re-
quires L-bit memory elements where L represents the length
of stochastic sequence used to represent a signal sample. In
Fig. 3(b) each delay requires W -bit memory elements where
W represents the binary word-length of the input signal.

In addition to the tradeoff between the delay cost and the
number of SNGs required as shown in Fig. 3, the implemen-

2698

x[n] SNG

x[n-1]
L-D

x[n-2] L-D

x[n-M] L-D

x[n]

SNG

x[n-1]

D

x[n-2]

D

x[n-M]

D

SNG

SNG

SNG

Sign(bM)

Inner product
sign(b2)

sign(b1)

sign(b0)

Inner product

sign(bM)

sign(b2)

sign(b1)

sign(b0)

(a) (b)

1

WW

Fig. 3. The circuit diagram of the FIR filter for (a) delay-
ing the stochastic sequence and (b) delaying the binary input
sequence.

tation of the filter should also take into account how the cor-
relation of different stochastic sequences in the circuit can be
reduced. In Fig. 3(b), each SNG used to convert each delayed
input signal should adopt a different seed for its initial LFSR
value to generate the random sequence. The principle is the
same for Fig. 3(a) but it is realized by changing the seeds for
different incoming signals.

Several simulations were performed to test the accuracy
of the stochastic FIR filters. An input test signal consisting of
a mixture of five sinusoidal waves of different frequencies and
random noise is used. Table 2 shows the error-to-signal power
ratio for low-pass and high-pass filters with four different cut-
off frequency settings and three different filter orders. In our
simulation, the length of the stochastic sequence is 1024. A
total of 256 input samples are used for simulation. It can be
found in general the error will increase with the filter order be-
cause the data correlation is more likely to increase for larger
circuit size. The result of the last column of Table 2 is for
the filter where we do not vary the seed for the input signal.
Fig. 4 further shows the spectrum of input and output signals
obtained from stochastic and ideal filters for a high-pass and
a low-pass filter. The frequency responses of these two filters
are also shown in this figure. It can be found that the spectrum
of the stochastic filter is very close to that of the ideal filter.

4. INFINITE IMPULSE RESPONSE FILTER DESIGN

The other category of digital filters is the infinite-impulse
response (IIR) filter. Different from FIR filters, IIR filters
contain recursive loops that impose strict constraints on
its implementation. The transfer function of an N th-order
IIR can be represented in Z-domain as H(z) = Y (z)

X(z) =

b0+b1z
−1+b2z

−2+···bMzM

1−a1z−1−a2z−2−···−aNzN . In order to implement the IIR fil-
ter, its time-domain representation is preferred, where output
y[n] equals (b0x[n] + b1x[n − 1] + · · · + bMx[n − M]) +
(a1y[n−1]+a2y[n−2]+ · · ·+aNy[n−N]). This equation

Table 2. Accuracy test results of stochastic FIR filters of dif-
ferent orders. (* use the constant seed)

Filter Low-Pass Cut-Off Frequency (π)
Order 0.2 0.4 0.6 0.8 0.8*
2 0.0037 0.0025 0.0013 0.0004 0.0032
4 0.0597 0.0465 0.0314 0.0145 0.0291
6 0.0648 0.0462 0.0637 0.0626 0.0943
Filter High-Pass Cut-Off Frequency (π)
Order 0.2 0.4 0.6 0.8 0.8*
2 0.0008 0.0015 0.0023 0.0028 0.1742
4 0.0097 0.0127 0.0137 0.0161 0.0803
6 0.0491 0.0316 0.0114 0.0137 0.0609

(a) (b)

Fig. 4. The filtering results of (a) a high-pass 4th-order FIR
filter with cutoff-frequency 0.6 π, and (b) a low-pass 6th-
order FIR filter with cutoff-frequency 0.4 π.

can be divided into two parts. This first part involves the input
signals x[.], while the other one involves the previous output
signals y[.]. Both parts can be realized by the inner-product
module as shown in Fig. 5. The summation of each part will
be scaled by a factor. The terms scaleA and scaleB, which
equal 1/

∑N−1
i=1 |ai| and 1/

∑M
i=0 |bi|, respectively, repre-

sent the scaling factors of the corresponding inner-product
modules. The summation results of both parts are added to-
gether by another multiplexor with the selection signal whose
probability is set to scaleB

scaleA+scaleB .
The design flow of IIR so far is similar to FIR. However, it

should be noted that in FIR, the relative frequency content is
not changed by scaling the output by a constant factor. How-
ever, in IIR design, the filter output y[n] will be fed-back for
further computation of the following outputs. If the output is
scaled, it will affect the result of the next output sample, and
eventually alter the filter function. If we take into account the
scale factors, the filter transfer function will now be changed

to H ′(z) =
1

scaleB (b0+b1z
−1+b2z

−2+···bMzM)

1− 1
scaleA (a1z−1+a2z−2+···aNzN)

. The zeros of
this new transfer function are the same as the original, but the
poles are not the same. Therefore, the final summation result
shown in the middle of Fig. 5 has to be multiplied by a scale
factor. Since the scale factor can be greater than one while
the multiplication of factor larger than one cannot be imple-

2699

mented very accurately using stochastic logic, the summation
sequence has to be converted back to a binary number first by
stochastic-number-to-binary-number converter (S2BC). This
binary number will then be multiplied by the scale-factor, and
the result will be converted into stochastic sequence again. It
should be noted that it is possible that the result of this binary
multiplication can be greater than one, which cannot be rep-
resented by any stochastic sequence. Therefore, the product
of the binary multiplier has to be clamped between ±1.

Based on the proposed IIR architecture, Table 3 shows the
error-to-signal power ratio for some IIR examples. It can be
found that even for small filter orders, the stochastic IIR filters
perform much worse than FIR filters. The reason is mainly
due to error accumulation in the recursive IIR filters. In ad-
dition, the error resulting due to SC will be magnified by the
binary multiplier. The error will increase significantly in the
filter order as illustrated in Table 3. For the case of a 4th order
low-pass IIR filter with cut-off frequency 0.2π, the error itself
is larger than the desired signal; therefore, this stochastic filter
fails to function properly. Table 3 also lists the factor scaleA,
the loop gain, in different IIR simulation cases. For those IIR
filters which exhibit large errors tend to have large scaleA.
Therefore, the direct implementation of a stochastic IIR filter
for an order larger than four is very likely to fail. However, the
filter can be implemented in several ways. Fig. 5 represents a
so-called direct-form implementation of IIR filters. However,
the filter can also be implemented as the cascaded form by de-
composing a high-order filter transfer function into the prod-
uct of several first and second-order sections. For example,
Fig. 6(a) shows the experimental results of the direct-form
stochastic IIR architecture for the transfer function given by:

0.0007378(1+6z−1+15z−2+20z−3+15z−4+6z−5+6z−6)
1+3.183z−1−4.622z−2+3.769z−3−1.791z−4+0.4593z−5−0.0453z−6 .
The output signal is all wrong. However, if we decompose
this transfer function as follows:

0.12(1+2z−1+z−2)
1−1.268z−1+0.7051z−2

0.12(1+2z−1+z−2)
1−1.01z−1+0.358z−2

0.12(1+2z−1+z−2)
1−0.904z−1+0.215z−2 ,

we can implement the same transfer function as the cascade
of three second-order IIR filters. As shown in Fig. 6(b), the
result is significantly more accurate than the direct-form.

y[n]

S2BC

Dx[n] SNG

x[n-1]
kD

x[n-2] kD

x[n-M-1] kD

sign(bM)

Inner
product sign(b2)

sign(b1)

sign(b0)

SNG

y[n-2]
kD

y[n-3] kD

y[n-N] kD

sign(bN)

Inner
product sign(a3)

sign(a2)

sign(a1)

scaleBscaleA

scaleB

+

S
N

G

scaleBscaleA+

Fig. 5. The circuit diagram of the stochastic IIR filter.

Table 3. Accuracy test results of stochastic IIR filters of dif-
ferent orders.

Filter Low-Pass Cut-Off Frequency (π)
Order 0.2 0.4 0.6 0.8
2 0.3161 0.0364 0.0613 0.3822
scaleA 1.55 0.56 0.56 1.55
4 15.4 0.1978 0.55 8.78
scaleA 5.92 1.674 1.674 5.92
Filter High-Pass Cut-Off Frequency (π)
Order 0.2 0.4 0.6 0.8
2 0.1058 0.0213 0.012 0.0187
scaleA 1.5558 0.5653 0.5683 1.558
4 3.3355 0.1211 0.0489 1.4175
scaleA 5.9255 1.6749 1.6749 5.9225

(a) (b)

Fig. 6. The simulation result of a 6-order stochastic low-pass
IIR filter based on (a) the direct-form implementation, and (b)
a cascade-form implementation.

5. CONCLUSION

This paper addresses several design issues of stochastic fil-
ters. First of all, a weighted multiplexor based summation-
tree architecture is proposed which can achieve better signal
scaling by controlling the multiplexor selection signal with
probability equal to the corresponding coefficient ratio. Next,
FIR filters can be built based on the core inner-product mod-
ule and additional storage elements. Different seeds are used
to convert the input samples to stochastic sequences with re-
duced correlation. The same approach can be extended to the
design of IIR filters. Due to the recursive nature of IIR, an ad-
ditional binary multiplier may be required to provide the sig-
nal gain of the recursive loop. Our experimental results show
that higher-order IIR stochastic filters do not perform well if
implemented by the direct-form. It is suggested that the cas-
cade IIR form can be a much better alternative. According to
our experimental results, the implementation of digital filters
based on SC is feasible. However, how to further enhance the
accuracy of stochastic IIR filters needs further investigation.

2700

6. REFERENCES

[1] B. R. Gaines, “Stochastic computing,” in Proc. AFIPS
Spring Joint Computer Conference, 1967, pp. 149–156.

[2] B. D. Brown and H. C. Card, “Stochastic neural computa-
tion I: Compputational elements,” IEEE Transactions on
Computers, vol. 50, no. 9, pp. 891–905, September 2001.

[3] A. Dinu, M. N. Cirstea, and M. Mccormick, “Stochas-
tic implementation of motor controllers,” in Proceedings
of the 2002 IEEE International Symposium on Industrial
Electronics, 2002, pp. 639–644.

[4] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J.
Lilja, “An architecture for fault-tolerant computation with
stochastic logic,” IEEE Transactions on Computers, vol.
60, no. 1, pp. 93–105, January 2011.

[5] W. Qian, M. D. Riedel, H. Zhou, and J. Bruck, “Trans-
forming probabilities with combinational logic,” IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 30, no. 9, pp. 1279–1292,
September 2011.

[6] A. Naderi, S. Mannor, M. Sawan, and W. J. Gross, “De-
layed stochastic decoding of LDPC codes,” IEEE Trans-
actions on Signal Processing, vol. 59, no. 11, pp. 5617–
5626, November 2011.

[7] K. K. Parhi, VLSI Digital Signal Processing Systems:
Design and Implementation, Hoboken, NJ: Wiley, 1999.

2701

