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ABSTRACT 
 
Many promising embedded computer vision applications, such as 
stereo estimation, rely on inference computation on Markov 
Random Fields (MRFs). Sequential Tree-Reweighted Message 
passing (TRW-S) is a superior MRF solving method, which 
provides better convergence and energy than others (e.g., belief 
propagation). Since software TRW-S solvers are slow, custom 
TRW-S hardware has been proposed to improve execution 
efficiency. This paper proposes hardware mechanisms to further 
optimize TRW-S hardware efficiency, by tracking differences in 
input message values (residues) and skipping computation when 
values no longer change (residue is zero). Evaluations of our 
hardware mechanisms using Middlebury benchmark show 1.6x to 
6x potential reduction in computation (depending on design 
parameters) while increasing energy by only 0.4% to 4.8%. 
 

Index Terms— Hardware optimization, stereo estimation, 
Markov Random Fields 
 

1. INTRODUCTION 
 
Many computer vision applications, such as 3D stereo estimation, 
rely on inference computation on Markov Random Fields (MRFs) 
formulated as graphs, where computation is done through message 
passing over the nodes of the graph. These applications promise 
disruptive new capabilities for embedded systems. For example, 
smart phones, security cameras, and even glasses [1] that can view 
the world in 3D would open up new usage scenarios and market 
opportunities. 
 Among the various MRF solving methods, Sequential Tree-
Reweighted Message passing (TRW-S) has been shown [2] to 
provide reliable convergence and yield better final energy than 
others (e.g., belief propagation). However, conventional TRW-S 
software solvers are slow due to the high computational demand of 
the algorithm. To this end, prior work has proposed a custom 
TRW-S hardware solution [3] to improve execution efficiency, 
thereby making it more amenable for embedded implementation.  
 This paper proposes a technique to further optimize TRW-S 
hardware efficiency. The technique works by tracking differences 
in input messages (residue) to identify converging nodes whose 
inputs no longer change (residue is zero). Once such nodes are 
identified, the computation on these nodes can be skipped safely 
without sacrificing output quality. However, identifying node 
convergence perfectly is impossible without observing full 
execution traces, thereby necessitating novel hardware mechanisms 
to predict convergence and to utilize the prediction to avoid 
unnecessary computation on already converging nodes.  

 Our contributions are as follows. First, using the standard 
Middlebury benchmark [2], we studied the opportunity of the 
proposed optimization technique on an ideal system and 
demonstrate potential reduction in computation by 7.2x on 
average. Second, we propose hardware mechanisms to predict 
convergence and skip computation on nodes that have been 
predicted to converge. Third, we evaluate the effectiveness of the 
proposed hardware mechanisms, and show that they can reduce 
computation by 1.6x to 6x (depending on design parameters), 
while sacrificing only 0.4% to 4.8% in energy. 
 The rest of the paper is organized as follows. Section 2 
reviews the TRW-S algorithm. Section 3 presents the opportunity 
study, which quantifies the potential benefit of the proposed 
technique under a perfect system. Section 4 elaborates on the 
proposed method for predicting convergence. Section 5 discusses 
the hardware mechanisms needed to support the proposed 
technique. Evaluations of the effectiveness of these mechanisms 
are presented in Section 6. Finally, Section 7 concludes.  

 
Figure 1: TRW-S go over a set of trees (T1 to T6) in a 
monotonically increasing order, through forward/backward passes. 
 

2. BACKGROUND ON TRW-S 
 

Many computer vision applications involve assigning labels 
optimally to nodes in a graph that represent an image. For example, 
in stereo estimation, the nodes represent pixels from a pair of 
stereo images, and the labels denote the 3D depth inferred from the 
image pair. The optimal labeling problem is typically formulated 
as an energy minimization on Markov Random Field [2]. Among 
various MRF solving methods, TRW-S [6][7] is known to provide 
better convergence and energy than others [2].  

In TRW-S, the energy minimization problem is cast as a set of 
minimization problems on trees that cover the graph. Figure 1(a) 
shows an example MRF graph with the associated set of trees, T1 
to T6, representing a 3x3 pixel image. The TRW-S computation 
follows a sequence of update functions applied to the nodes in the 
trees in a monotonically increasing order. This “sequential” update 
order impacts convergence as it avoids oscillating energy value. As 
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a specific example, T1 tree in Figure 1 would update node 1 and 
sends the output message to node 2, then from node 2 to 3. For T4 
tree, the order is node 1, 4, and 7. To achieve monotonically 
increasing order for all the trees in the graph, the typical approach 
is to iterate over the graph by passing messages from top-left to 
bottom-right (forward pass), and then in the opposite direction 
(backward pass), as illustrated in Figure 1(b) and 1(c). 
 

3. RESIDUAL-BASED APPROACH 
 
The proposed residual-based approach relies on the observation 
that the function to update the nodes in TRW-S trees is stateless. 
That is, if the inputs to the function do not change, the outputs will 
remain the same. Therefore, if the input message values to a node 
no longer change, there is no need to compute the update function 
for that node anymore.  

 

 
Figure 2: Plots of message values at two nodes in the true disparity 
map for Tsukuba image from Middleburry benchmark [4][5]. The 
X-axis is normalized to 1 with respect to the total number of 
iterations needed for all nodes in the graph to converge. The 
bottom right shows a convergence-map for the nodes in the image. 
The white nodes are those that have already converged after the 
first ~30% of the total number of iterations.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Cumulative distribution function (CDF) of node 
convergence for the three Middlebury images. For each image, we 
run TRW-S iterations until the entire graph converges, and 
normalize the iteration number to 1. 

To this end, we define the residue as the difference between 
the message values of a particular node across two consecutive 
iterations. We further define a node to have reached convergence if 
the residue has reached zero, and no longer changes. We propose 
tracking node residues and identifying node convergence, in order 
to save computation by not updating these already converging 
nodes. Similar residual-based optimization has been proposed 
before [8], however it was in the context of belief propagation. 

Figure 2 illustrates the opportunity of applying residual-based 
optimization in the context of TRW-S for stereo estimation. The 
figure includes plots of message values from two nodes in the 
Tsukuba image from the Middlebury benchmark [4][5] over a 
number of iterations necessary for all the nodes in the entire graph 
to converge. The number of iterations is normalized to 1 (i.e., 0 
and 1 is the first and last iteration, respectively). One node 
corresponds to a pixel in a flat (low-frequency) image region (i.e., 
the lamp), while another node belongs to a pixel at an edge (high-
frequency) region in the image. As the plots show, both nodes 
converge within the first ~65% of the total number of iterations, 
with the node from the non-varying (lamp) area of the image 
converges much quicker (at ~10% of the total iterations) than the 
edge node (at ~65%). The figure also shows a black-white 
snapshot at the first 30% of execution, where the white area 
represents nodes that have already converged. As shown, a 
significant amount of nodes are white. 

Figure 3 depicts cumulative distribution function (CDF) of 
node convergence for the three Middlebury benchmark images. On 
average, 86% of nodes have already converged in the first 40% of 
the total number of iterations, and 99% of nodes converge within 
the first 80% of the total number of iterations. This presents a 
tremendous opportunity to reduce computation by skipping the 
update function for these already converging nodes. For the three 
Middlebury benchmark images, if we skip the update on the 
converging nodes, the total number of updates is on average 7.2x 
smaller than the total updates if we did not do any skipping. 
 

 
Figure 4: Convergence-maps from different iterations of Tsukuba. 
White regions represent converged nodes. 
   

4. PREDICTING NODE CONVERGENCE 
 
In practice, it is non-trivial to know when a node has converged. 
Without knowing the input message values for all the iterations 
needed for the graph to converge, it is impossible to identify the 
point of convergence for a given node. This is because at some 
iterations, message values may not change. However, at later 
iterations, they may change again. The bottom-left graph in Figure 
2 illustrates this situation. At the first 40% to 50% of execution, the 
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message value remains constant (indicated by a red circle in the 
figure). Following that, the message value changes again, before it 
reaches convergence at ~65% of execution.  

Since it is impossible to know for sure when a node has 
converged without looking ahead, we propose making a prediction 
instead. If our prediction is correct, then we can safely skip the 
node that has been predicted to converge. The downfall occurs if 
we predict incorrectly. At this point, we may sacrifice the quality 
of the TRW-S output by skipping nodes that have not actually 
converged. However, if the prediction is accurate enough, the 
degradation in quality can still be acceptable. 
 
4.1. Predictor Design 
 
The most straightforward way to make a prediction is based on 
history, or temporal behavior. If over X number of iterations, 
message value remains the same, we may predict that the node has 
converged. However, we found that the ideal value of X varies 
widely among different nodes. A node with long intermittent 
periods of constant message values (as mentioned above) would 
require a large X to provide good prediction accuracy. However, 
the larger the X, the more we miss the opportunity to skip 
computations since we have to wait for X iterations before any 
prediction can be made. 
 Therefore, instead of relying on temporal behavior, we 
propose a predictor based on spatial information. That is, we 
observe that nodes in an image area with edges (high frequency) 
converge at a much later iteration than the nodes at the flat image 
regions (low frequency). Further, flat image regions tend to 
converge together. This behavior is shown in Figure 4, which 
shows the original Tsukuba image along with snapshots from 
different iterations. Therefore, instead of predicting a single node, 
we propose predicting convergence at a group (or tile) level.  
 

Figure 5: Pseudo-code for the convergence prediction algorithm
  
 Figure 5 shows the pseudo-code of our prediction. At iteration 
k, given a group of nodes (G) and the sum of the messages of G 
from the previous iteration (msum

k-1), the algorithm returns true if it 
predicts that all the nodes in G has converged. Internally, the 
algorithm calculates the sum of messages in G for the current 
iteration (msum

k), and compares it with the sum from the previous 
iteration (msum

k-1) to calculate the residue. If the residue is zero, 
then the prediction returns true to indicate convergence. Once a 
group has been predicted to converge, then the updates for all the 
nodes in the group can be skipped entirely. 
 
4.2. Predictor Performance 
 

The prediction accuracy of our predictor for varying group 
sizes, where a group is a square tile of NxN size is shown in Figure 
6(a). The accuracy is in terms of pixel misprediction, indicating the 
percentage of incorrect predictions. For example, a 5% 
misprediction means that 5% out of the total predictions were 
made incorrectly (i.e., prediction says that a node has converged, 

while in actuality the node has not yet converged). As expected, 
larger group size results in better prediction accuracy (i.e., lower 
misprediction). And, a node-level prediction (1x1 group size) 
yields a much worse accuracy than a group-level prediction. 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                (b) 
Figure 6: (a) Predictor accuracy for varying group sizes. (b) 
Cumulative distribution function (CDF) of node convergence for 
the three Middlebury images. Solid lines indicate CDF calculated 
based on predicted convergence, and dashed lines indicate CDF 
from actual convergence (taken from Figure 3). 
 

Figure 6(b) shows the CDF of node convergence. The solid 
lines show CDF calculated based on predicted convergence, while 
dashed lines are CDF based on actual convergence (taken from 
Figure 3). For Tsukuba and Venus, our predictor requires only a 
short time to make prediction (i.e., their CDF lines lagging only 
slightly behind the actual CDF lines). For Teddy, our predictor 
(inaccurately) makes prediction slightly too early. In overall, our 
predictor performs quite well. 
 

5. PROPOSED HARDWARE 
 
5.1. Baseline Hardware 
 
To the best of our knowledge, the hardware-based TRW-S system 
proposed in [3] provides the best results (i.e., from using TRW-S 
algorithm) as well as performance compared to other prior work 
that accelerate energy minimization algorithms [9]-[12]. Therefore, 
we use this work as our baseline design.  

The system proposed in [3] utilizes a FPGA-based platform, 
where the graph data is streamed to an FPGA that implements a 
custom hardware processing-element to perform the TRW-S 
update function in a pipelined fashion. Since TRW-S imposes 
sequential ordering (see Figure 1), data dependencies make 
parallelized implementation non-trivial. To address this, the TRW-
S hardware adopts diagonal-style processing shown in Figure 7(a).  

In this example, the diagonal processing style goes through 
node {1}, then nodes {2,3}, followed by nodes {4, 5, 6}, and so 
on. Notice that nodes in a given diagonal stripe (e.g., {2,3}, 
{4,5,6}) are independent of each other and can be processed in 
parallel. Such diagonal processing maintains monotonically 
increasing order of updates, while exposing parallelization 
opportunity for the nodes within each diagonal stripe.  
 
5.2. Proposed Mechanism for Residual Approach 
 
5.2.1. Prediction 
We use a simple method to implement the prediction algorithm 
described previously in Section 4. For each group of nodes, we 
carry the sum of message values from the previous iteration (i.e., 
msum

k-1 in the pseudo-code in Figure 5). Thus, we only add very 
little storage (i.e., one value per group). To calculate the sum of 
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messages, TRW-S already calculates the sum of its input messages 
in the first part of its update function [2]. Therefore, we can 
piggyback on this computation. The only additional operations 
needed are to sum the labels together and to calculate the residue (a 
single subtraction), which are relatively trivial compared to the rest 
of the update function. 
 

  
(a)                                        (b) 

Figure 7: (a) Baseline node-level diagonal processing from [3]. (b) 
The proposed tile-level approach, which performs diagonal 
processing across nodes (within a tile) as well as tiles. 
 
5.2.2. Scheduling 
Unlike the baseline TRW-S hardware, our predictor favors a 
group/tile level processing. Therefore, we propose breaking the 
graph into tiles (Figure 7(b)), and perform tile-level processing. 
Such a tile-level approach can still take advantage of diagonal style 
processing. First, for a given tile, we can still process the nodes 
inside the tile diagonally, therefore benefiting from the same type 
of parallelism as in the baseline TRW-S hardware. Second, we can 
process the tiles themselves diagonally as well. In Figure 7(b) 
example, we first process Tile 1, then Tile 2 and 3 in parallel, and 
so on. Notice that with tile-level processing, we still maintain the 
monotonically increasing order of updates required by TRW-S. 

The tile processing also helps ease scheduling data transfers 
between system memory (e.g., DDR) and FPGA, since we can 
utilize bulk transfers, which is not the case if we had to skip data 
transfers for individual nodes.  
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                          (b)  
Figure 8: (a) Reduction in computations and (b) increase in energy 
from the proposed residual-based TRW-S optimization approach, 
with respect to the original TRW-S algorithm.  
 

6. EVALUATION 
 
Here, we evaluate the cost-benefit trade-off of the proposed 
residual-based approach, for various prediction group sizes. We 
modified the Middlebury benchmark code to include our prediction 
mechanism and to skip update functions when a group has been 
predicted to converge. We use default Middlebury TRW-S 
parameters for the characterization [2]. 
 Figure 8 shows (a) the reduction in computation and (b) the 
increase in energy for varying prediction group sizes, relative to 

baseline TRW-S without residual tracking. The figure shows the 
results for the three Middlebury benchmark input images, as well 
as the average among them. Tsukuba and Teddy have higher 
potential reduction in computation than Venus, while also suffering 
from higher increase in energy. This is because these two images 
have more features than Venus, which is relatively flat, which 
leads to higher variation in terms of node convergence. i.e., some 
nodes at the feature edges require more iterations to converge than 
other nodes at flat image regions. Therefore, there is more 
opportunity for skipping early-converging nodes. In overall, the 
residual-based approach only incurs 0.4% to 4.8% average increase 
in energy for the group sizes under study, while providing 1.6x to 
6x average reduction in computation.  
 

7. CONCLUSION 
 
This paper proposes a technique to improve the efficiency of 
Sequential Tree-Reweighted Message passing (TRW-S) algorithm 
implementation in hardware. TRW-S is a superior MRF solving 
method that is widely used in computer vision applications, such as 
stereo estimation. Our evaluations using Middlebury benchmark 
show that the technique has the potential to reduce computation by 
7.2x if we assume a perfect system. Furthermore, we show that the 
proposed hardware mechanisms can reduce computation by 1.6x to 
6x, while exacerbating energy by only 0.4% to 4.8%. 
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