

HARDWARE-EFFICIENT STEREO ESTIMATION
USING A RESIDUAL-BASED APPROACH

Abhishek A. Sharma1, Kaustubh Neelathalli1, Diana Marculescu1, Eriko Nurvitadhi2

Carnegie Mellon University1,

Intel Science and Technology Center on Embedded Computing2

ABSTRACT

Many promising embedded computer vision applications, such as
stereo estimation, rely on inference computation on Markov
Random Fields (MRFs). Sequential Tree-Reweighted Message
passing (TRW-S) is a superior MRF solving method, which
provides better convergence and energy than others (e.g., belief
propagation). Since software TRW-S solvers are slow, custom
TRW-S hardware has been proposed to improve execution
efficiency. This paper proposes hardware mechanisms to further
optimize TRW-S hardware efficiency, by tracking differences in
input message values (residues) and skipping computation when
values no longer change (residue is zero). Evaluations of our
hardware mechanisms using Middlebury benchmark show 1.6x to
6x potential reduction in computation (depending on design
parameters) while increasing energy by only 0.4% to 4.8%.

Index Terms— Hardware optimization, stereo estimation,
Markov Random Fields

1. INTRODUCTION

Many computer vision applications, such as 3D stereo estimation,
rely on inference computation on Markov Random Fields (MRFs)
formulated as graphs, where computation is done through message
passing over the nodes of the graph. These applications promise
disruptive new capabilities for embedded systems. For example,
smart phones, security cameras, and even glasses [1] that can view
the world in 3D would open up new usage scenarios and market
opportunities.
 Among the various MRF solving methods, Sequential Tree-
Reweighted Message passing (TRW-S) has been shown [2] to
provide reliable convergence and yield better final energy than
others (e.g., belief propagation). However, conventional TRW-S
software solvers are slow due to the high computational demand of
the algorithm. To this end, prior work has proposed a custom
TRW-S hardware solution [3] to improve execution efficiency,
thereby making it more amenable for embedded implementation.
 This paper proposes a technique to further optimize TRW-S
hardware efficiency. The technique works by tracking differences
in input messages (residue) to identify converging nodes whose
inputs no longer change (residue is zero). Once such nodes are
identified, the computation on these nodes can be skipped safely
without sacrificing output quality. However, identifying node
convergence perfectly is impossible without observing full
execution traces, thereby necessitating novel hardware mechanisms
to predict convergence and to utilize the prediction to avoid
unnecessary computation on already converging nodes.

 Our contributions are as follows. First, using the standard
Middlebury benchmark [2], we studied the opportunity of the
proposed optimization technique on an ideal system and
demonstrate potential reduction in computation by 7.2x on
average. Second, we propose hardware mechanisms to predict
convergence and skip computation on nodes that have been
predicted to converge. Third, we evaluate the effectiveness of the
proposed hardware mechanisms, and show that they can reduce
computation by 1.6x to 6x (depending on design parameters),
while sacrificing only 0.4% to 4.8% in energy.
 The rest of the paper is organized as follows. Section 2
reviews the TRW-S algorithm. Section 3 presents the opportunity
study, which quantifies the potential benefit of the proposed
technique under a perfect system. Section 4 elaborates on the
proposed method for predicting convergence. Section 5 discusses
the hardware mechanisms needed to support the proposed
technique. Evaluations of the effectiveness of these mechanisms
are presented in Section 6. Finally, Section 7 concludes.

Figure 1: TRW-S go over a set of trees (T1 to T6) in a
monotonically increasing order, through forward/backward passes.

2. BACKGROUND ON TRW-S

Many computer vision applications involve assigning labels
optimally to nodes in a graph that represent an image. For example,
in stereo estimation, the nodes represent pixels from a pair of
stereo images, and the labels denote the 3D depth inferred from the
image pair. The optimal labeling problem is typically formulated
as an energy minimization on Markov Random Field [2]. Among
various MRF solving methods, TRW-S [6][7] is known to provide
better convergence and energy than others [2].

In TRW-S, the energy minimization problem is cast as a set of
minimization problems on trees that cover the graph. Figure 1(a)
shows an example MRF graph with the associated set of trees, T1
to T6, representing a 3x3 pixel image. The TRW-S computation
follows a sequence of update functions applied to the nodes in the
trees in a monotonically increasing order. This “sequential” update
order impacts convergence as it avoids oscillating energy value. As

2693978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

a specific example, T1 tree in Figure 1 would update node 1 and
sends the output message to node 2, then from node 2 to 3. For T4
tree, the order is node 1, 4, and 7. To achieve monotonically
increasing order for all the trees in the graph, the typical approach
is to iterate over the graph by passing messages from top-left to
bottom-right (forward pass), and then in the opposite direction
(backward pass), as illustrated in Figure 1(b) and 1(c).

3. RESIDUAL-BASED APPROACH

The proposed residual-based approach relies on the observation
that the function to update the nodes in TRW-S trees is stateless.
That is, if the inputs to the function do not change, the outputs will
remain the same. Therefore, if the input message values to a node
no longer change, there is no need to compute the update function
for that node anymore.

Figure 2: Plots of message values at two nodes in the true disparity
map for Tsukuba image from Middleburry benchmark [4][5]. The
X-axis is normalized to 1 with respect to the total number of
iterations needed for all nodes in the graph to converge. The
bottom right shows a convergence-map for the nodes in the image.
The white nodes are those that have already converged after the
first ~30% of the total number of iterations.

Figure 3: Cumulative distribution function (CDF) of node
convergence for the three Middlebury images. For each image, we
run TRW-S iterations until the entire graph converges, and
normalize the iteration number to 1.

To this end, we define the residue as the difference between
the message values of a particular node across two consecutive
iterations. We further define a node to have reached convergence if
the residue has reached zero, and no longer changes. We propose
tracking node residues and identifying node convergence, in order
to save computation by not updating these already converging
nodes. Similar residual-based optimization has been proposed
before [8], however it was in the context of belief propagation.

Figure 2 illustrates the opportunity of applying residual-based
optimization in the context of TRW-S for stereo estimation. The
figure includes plots of message values from two nodes in the
Tsukuba image from the Middlebury benchmark [4][5] over a
number of iterations necessary for all the nodes in the entire graph
to converge. The number of iterations is normalized to 1 (i.e., 0
and 1 is the first and last iteration, respectively). One node
corresponds to a pixel in a flat (low-frequency) image region (i.e.,
the lamp), while another node belongs to a pixel at an edge (high-
frequency) region in the image. As the plots show, both nodes
converge within the first ~65% of the total number of iterations,
with the node from the non-varying (lamp) area of the image
converges much quicker (at ~10% of the total iterations) than the
edge node (at ~65%). The figure also shows a black-white
snapshot at the first 30% of execution, where the white area
represents nodes that have already converged. As shown, a
significant amount of nodes are white.

Figure 3 depicts cumulative distribution function (CDF) of
node convergence for the three Middlebury benchmark images. On
average, 86% of nodes have already converged in the first 40% of
the total number of iterations, and 99% of nodes converge within
the first 80% of the total number of iterations. This presents a
tremendous opportunity to reduce computation by skipping the
update function for these already converging nodes. For the three
Middlebury benchmark images, if we skip the update on the
converging nodes, the total number of updates is on average 7.2x
smaller than the total updates if we did not do any skipping.

Figure 4: Convergence-maps from different iterations of Tsukuba.
White regions represent converged nodes.

4. PREDICTING NODE CONVERGENCE

In practice, it is non-trivial to know when a node has converged.
Without knowing the input message values for all the iterations
needed for the graph to converge, it is impossible to identify the
point of convergence for a given node. This is because at some
iterations, message values may not change. However, at later
iterations, they may change again. The bottom-left graph in Figure
2 illustrates this situation. At the first 40% to 50% of execution, the

2694

message value remains constant (indicated by a red circle in the
figure). Following that, the message value changes again, before it
reaches convergence at ~65% of execution.

Since it is impossible to know for sure when a node has
converged without looking ahead, we propose making a prediction
instead. If our prediction is correct, then we can safely skip the
node that has been predicted to converge. The downfall occurs if
we predict incorrectly. At this point, we may sacrifice the quality
of the TRW-S output by skipping nodes that have not actually
converged. However, if the prediction is accurate enough, the
degradation in quality can still be acceptable.

4.1. Predictor Design

The most straightforward way to make a prediction is based on
history, or temporal behavior. If over X number of iterations,
message value remains the same, we may predict that the node has
converged. However, we found that the ideal value of X varies
widely among different nodes. A node with long intermittent
periods of constant message values (as mentioned above) would
require a large X to provide good prediction accuracy. However,
the larger the X, the more we miss the opportunity to skip
computations since we have to wait for X iterations before any
prediction can be made.
 Therefore, instead of relying on temporal behavior, we
propose a predictor based on spatial information. That is, we
observe that nodes in an image area with edges (high frequency)
converge at a much later iteration than the nodes at the flat image
regions (low frequency). Further, flat image regions tend to
converge together. This behavior is shown in Figure 4, which
shows the original Tsukuba image along with snapshots from
different iterations. Therefore, instead of predicting a single node,
we propose predicting convergence at a group (or tile) level.

Figure 5: Pseudo-code for the convergence prediction algorithm

 Figure 5 shows the pseudo-code of our prediction. At iteration
k, given a group of nodes (G) and the sum of the messages of G
from the previous iteration (msum

k-1), the algorithm returns true if it
predicts that all the nodes in G has converged. Internally, the
algorithm calculates the sum of messages in G for the current
iteration (msum

k), and compares it with the sum from the previous
iteration (msum

k-1) to calculate the residue. If the residue is zero,
then the prediction returns true to indicate convergence. Once a
group has been predicted to converge, then the updates for all the
nodes in the group can be skipped entirely.

4.2. Predictor Performance

The prediction accuracy of our predictor for varying group
sizes, where a group is a square tile of NxN size is shown in Figure
6(a). The accuracy is in terms of pixel misprediction, indicating the
percentage of incorrect predictions. For example, a 5%
misprediction means that 5% out of the total predictions were
made incorrectly (i.e., prediction says that a node has converged,

while in actuality the node has not yet converged). As expected,
larger group size results in better prediction accuracy (i.e., lower
misprediction). And, a node-level prediction (1x1 group size)
yields a much worse accuracy than a group-level prediction.

(a) (b)
Figure 6: (a) Predictor accuracy for varying group sizes. (b)
Cumulative distribution function (CDF) of node convergence for
the three Middlebury images. Solid lines indicate CDF calculated
based on predicted convergence, and dashed lines indicate CDF
from actual convergence (taken from Figure 3).

Figure 6(b) shows the CDF of node convergence. The solid
lines show CDF calculated based on predicted convergence, while
dashed lines are CDF based on actual convergence (taken from
Figure 3). For Tsukuba and Venus, our predictor requires only a
short time to make prediction (i.e., their CDF lines lagging only
slightly behind the actual CDF lines). For Teddy, our predictor
(inaccurately) makes prediction slightly too early. In overall, our
predictor performs quite well.

5. PROPOSED HARDWARE

5.1. Baseline Hardware

To the best of our knowledge, the hardware-based TRW-S system
proposed in [3] provides the best results (i.e., from using TRW-S
algorithm) as well as performance compared to other prior work
that accelerate energy minimization algorithms [9]-[12]. Therefore,
we use this work as our baseline design.

The system proposed in [3] utilizes a FPGA-based platform,
where the graph data is streamed to an FPGA that implements a
custom hardware processing-element to perform the TRW-S
update function in a pipelined fashion. Since TRW-S imposes
sequential ordering (see Figure 1), data dependencies make
parallelized implementation non-trivial. To address this, the TRW-
S hardware adopts diagonal-style processing shown in Figure 7(a).

In this example, the diagonal processing style goes through
node {1}, then nodes {2,3}, followed by nodes {4, 5, 6}, and so
on. Notice that nodes in a given diagonal stripe (e.g., {2,3},
{4,5,6}) are independent of each other and can be processed in
parallel. Such diagonal processing maintains monotonically
increasing order of updates, while exposing parallelization
opportunity for the nodes within each diagonal stripe.

5.2. Proposed Mechanism for Residual Approach

5.2.1. Prediction
We use a simple method to implement the prediction algorithm
described previously in Section 4. For each group of nodes, we
carry the sum of message values from the previous iteration (i.e.,
msum

k-1 in the pseudo-code in Figure 5). Thus, we only add very
little storage (i.e., one value per group). To calculate the sum of

2695

messages, TRW-S already calculates the sum of its input messages
in the first part of its update function [2]. Therefore, we can
piggyback on this computation. The only additional operations
needed are to sum the labels together and to calculate the residue (a
single subtraction), which are relatively trivial compared to the rest
of the update function.

(a) (b)

Figure 7: (a) Baseline node-level diagonal processing from [3]. (b)
The proposed tile-level approach, which performs diagonal
processing across nodes (within a tile) as well as tiles.

5.2.2. Scheduling
Unlike the baseline TRW-S hardware, our predictor favors a
group/tile level processing. Therefore, we propose breaking the
graph into tiles (Figure 7(b)), and perform tile-level processing.
Such a tile-level approach can still take advantage of diagonal style
processing. First, for a given tile, we can still process the nodes
inside the tile diagonally, therefore benefiting from the same type
of parallelism as in the baseline TRW-S hardware. Second, we can
process the tiles themselves diagonally as well. In Figure 7(b)
example, we first process Tile 1, then Tile 2 and 3 in parallel, and
so on. Notice that with tile-level processing, we still maintain the
monotonically increasing order of updates required by TRW-S.

The tile processing also helps ease scheduling data transfers
between system memory (e.g., DDR) and FPGA, since we can
utilize bulk transfers, which is not the case if we had to skip data
transfers for individual nodes.

(a) (b)
Figure 8: (a) Reduction in computations and (b) increase in energy
from the proposed residual-based TRW-S optimization approach,
with respect to the original TRW-S algorithm.

6. EVALUATION

Here, we evaluate the cost-benefit trade-off of the proposed
residual-based approach, for various prediction group sizes. We
modified the Middlebury benchmark code to include our prediction
mechanism and to skip update functions when a group has been
predicted to converge. We use default Middlebury TRW-S
parameters for the characterization [2].
 Figure 8 shows (a) the reduction in computation and (b) the
increase in energy for varying prediction group sizes, relative to

baseline TRW-S without residual tracking. The figure shows the
results for the three Middlebury benchmark input images, as well
as the average among them. Tsukuba and Teddy have higher
potential reduction in computation than Venus, while also suffering
from higher increase in energy. This is because these two images
have more features than Venus, which is relatively flat, which
leads to higher variation in terms of node convergence. i.e., some
nodes at the feature edges require more iterations to converge than
other nodes at flat image regions. Therefore, there is more
opportunity for skipping early-converging nodes. In overall, the
residual-based approach only incurs 0.4% to 4.8% average increase
in energy for the group sizes under study, while providing 1.6x to
6x average reduction in computation.

7. CONCLUSION

This paper proposes a technique to improve the efficiency of
Sequential Tree-Reweighted Message passing (TRW-S) algorithm
implementation in hardware. TRW-S is a superior MRF solving
method that is widely used in computer vision applications, such as
stereo estimation. Our evaluations using Middlebury benchmark
show that the technique has the potential to reduce computation by
7.2x if we assume a perfect system. Furthermore, we show that the
proposed hardware mechanisms can reduce computation by 1.6x to
6x, while exacerbating energy by only 0.4% to 4.8%.

8. ACKNOWLEDGMENTS

This research has been funded (in part) by the Intel Science and
Technology Center on Embedded Computing.

9. REFERENCES

[1] Google Glass, URL: https://plus.google.com/+projectglass
[2] R. Szeliski, et al., "A comparative study of energy minimization

methods for markov random fields with smoothness-based priors,"
IEEE Trans. on Pattern Analysis and Machine Intelligence, 2008.

[3] J. Choi and R. Rutenbar, “Hardware implementation of MRF map
inference on an FPGA platform,” Field Programmable Logic and
Applications, 2012.

[4] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” International Journal
of Computer Vision, 2002.

[5] D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps
using structured light,” IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2003.

[6] V. Kolmogorov, “Convergent tree-reweighted message passing for
energy minimization,” IEEE Transaction on Pattern Analysis and
Machine Intelligence, 2006.

[7] M. J. Wainwright, et al., “MAP estimation via agreement on trees:
message-passing and linear-programming approaches,” IEEE
Transactions on Information Theory, 2005.

[8] G. Elidan, I. McGraw, and D. Koller, “Residual belief propagation:
informed scheduling for asynchronous message passing,” Uncertainty
in Artificial Intelligence, 2006.

[9] L. Zhou, et al., "Accelerated Belief Propagation for hardware
implementation," Int. Conference on Multimedia Technology, 2011.

[10] A. Brunton, C. Shu, and G. Roth, “Belief propagation on the GPU for
stereo vision," Computer and Robot Vision, 2006.

[11] M. P. Kumar and P.H.S. Torr, “Fast memory-efficient generalized
belief propagation,” European Conf. on Computer Vision, 2006.

[12] C. Liang, et al., "Hardware-Efficient Belief Propagation," IEEE
Transactions on Circuits and Systems for Video Technology, 2011.

2696

