
PORTABLE PARALLEL KERNELS FOR HIGH-SPEED BEAMFORMING
IN SYNTHETIC APERTURE ULTRASOUND IMAGING

Joao Amaro∗, Gabriel Falcao∗, Billy Y. S. Yiu‡, and Alfred C. H. Yu‡

∗Instituto de Telecomunicações, University of Coimbra, Portugal
‡Medical Engineering Program, University of Hong Kong, Hong Kong SAR

ABSTRACT

In medical ultrasound, synthetic aperture (SA) imaging is
well-considered as a novel image formation technique for
achieving superior resolution than that offered by existing
scanners. However, its intensive processing load is known
to be a challenging factor. To address such a computational
demand, this paper proposes a new parallel approach based
on the design of OpenCL signal processing kernels that can
compute SA image formation in real-time. We demonstrate
how these kernels can be ported onto different classes of par-
allel processors, namely multi-core CPUs and GPUs, whose
multi-thread computing resources are able to process more
than 250 fps. Moreover, they have strong potential to support
the development of more complex algorithms, thus increasing
the depth range of the inspected human volume and the final
image resolution observed by the medical practitioner.

Index Terms— Synthetic aperture, Ultrasound medical
imaging, Beamformer, OpenCL, GPU

1. INTRODUCTION

Ultrasound medical imaging systems are nowadays a funda-
mental tool for helping medical practitioners performing a re-
liable non-invasive diagnosis procedure. Based on the pro-
cessing and analysis of pulse-echo signals, current ultrasound
imaging systems are complex from a hardware perspective
due to the use of array transducers that inherently involve
multi-channel processing. They are supported by extensive
microelectronics systems such as filed-programmable gate ar-
rays (FPGA) and digital signal processors (DSP) [1].

As the theoretical principles of advanced ultrasound im-
age formation paradigms have become more mature in recent
years, there is a growing level of interest in realizing them in
practice. Of particular interest is the real-time execution of
those algorithms, which represents a key factor in ultrasound
imaging regarding its bedside clinical role.

One such advanced ultrasound technique is synthetic
aperture beamforming, which transmits unfocused pulses

This work is funded in part by the Portuguese Foundation for Science
and Technology (FCT) project PEst-OE/EEI/LA0008/2011, as well as the
Hong Kong Innovation and Technology Fund (ITS/292/11).

form distinct lateral positions [2]. Each pulse generates
echoes that are received by all channels in the sensor to form
a low-resolution image (LRI) per each instance of pulse-echo
sensing, which is accomplished by performing delay-and-
sum beamforming at each pixel position. Then the sum of a
predefined set of LRIs can be used to form high-resolution
images (HRI) [3]. Naturally, these operations are computa-
tionally demanding. Additionally, unlike previous ultrasound
techniques that use the same set of focusing delays, synthetic
aperture beamforms each pixel based on different sets of
varying focus delays [2], which is more complex to do and
demands higher processing capabilities.

Although originally dedicated to image rendering, graph-
ics processing units (GPU) have been recently introduced as
powerful parallel accelerators for general-purpose comput-
ing [4, 5]. They have been shown to be well-suited to the real-
time realization of synthetic aperture imaging algorithms [6].
Unlike conventional approaches that exploit the compute uni-
fied device architecture (CUDA) interface [7] which is limited
to execute only in NVIDIA GPUs, in this article we propose
using OpenCL [8, 9], a more generic programming model,
and show that it supports the execution of these parallel ker-
nels on a wide variety of multi- and many-core systems [10].
Depending on the specificities of the system (e.g., number of
array transducers, image resolution, etc.), OpenCL allows tar-
geting synthetic aperture kernels to the most appropriate het-
erogeneous computational environment [11] that is capable of
supplying the necessary processing power. In this article we
report experimental results obtained by running the same ker-
nel on Intel CPUs and ATI or NVIDIA GPUs. We also show
how these OpenCL-based signal processing kernels were de-
veloped in order to extract parallelism from the architecture.

2. SYNTHETIC APERTURE IMAGING

We first discuss the theory associated with synthetic aperture
imaging. We start by identifying and elaborating on the dif-
ferent phases of the algorithm.

2688978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

2.1. Signal transmission characteristics

The transmitting elements used in current transducers emit a
linear signal. The synthetic aperture algorithm is based on the
emission of a spherical wave from each transmission source.
To minimize changes in the hardware, we can use the current
transducers, but the signal is emitted as in figure 1 to emulate a
spherical wave. The point behind the element array represents
the epicenter of the spherical wave, or the virtual source point.

2.2. Signal reception

As previously mentioned, the signal propagates in the form
of a spherical wave both in transmission and in reception (af-
ter reflection in the scattering medium). So, we must take
into account the relative delay of the signal received from a
reflection in a pixel in relation to the neighboring receiving
elements.

2.3. LRI calculation

To compute each pixel of a LRI, we now have to account for
the contribution of each receiving element, with a delay-and-
sum procedure. This is basically a linear interpolation of the
pixels’ position neighboring analytic data samples αn,m:

αn,m(P0) = λan,m(k) + [1− λ]an,m(k + 1), (1)

where n corresponds to the n− th receive channel and m rep-
resents the m− th transmitting virtual source point. Each of
the receiving elements contribution is passed through a win-
dow function ωn. To find the depth sample number k, we
must first consider the focusing delay τn,m(P0) and the inter-
polation weight λ:

k = ⌊fsτn,m(P0)⌋, (2)

λ = 1 + k − fsτn,m(P0). (3)

The focusing delay in SA imaging is calculated in the fol-
lowing way:

τn,m(P0) =
dT (P0;m) + dR(P0;n)

c0
, (4)

where dT (P0;m) represents the distance between the trans-
mitting position and the position of pixel P0, and dR(P0;n)
the distance between this position and the nth receiving ele-
ment, while c0 is the speed in the scattering medium.

Finally, the value for pixel P0 of the mth LRI can be ob-
tained by:

Lm(P0) =

N∑

n=1

ωnαn,m(P0), (5)

...

...

LRI 1 LRI 2 LRI N

HRI 1

1st virtual source point

1st ... n-th ... receiver

m-th virtual source point

Fig. 1. Pulse-echo system based on synthetic aperture and the
multi-channel generation of LRI and HRI.

2.4. HRI compounding

After computing a new LRI, we replace the oldest LRI in the
compounding frame, and after recursive summation of the en-
tire frame (with size N), we are able to form a new HRI. This
can be modeled as a relation between the new HRI and the
previous one:

Hi(P0) = Hi−1(P0) + Li(P0)− Li−M (P0). (6)

3. PARALLEL PORTABLE KERNELS FOR SA

Historically, developing an algorithm for running on a mul-
ticore system was considered nontrivial. Recently, parallel
programming models were developed to allow programming
some specific architectures in particular [7]. Later, the in-
troduction of a broadly accepted programming model com-
patible with different multi- and many-core architectures was
made possible with the arrival of OpenCL [8]. OpenCL pro-
vides a framework that allows signal processing programmers
to develop code once and execute it on a variety of multicore
systems such as CPUs or GPUs. Using a C/C++ environment,
the programmer instructs the compiler how a code section
should be parallelized. Parallelization is organized by the pro-
grammer in work-groups, where each work-group dispatches
a certain predefined number of work-items. At runtime, the
program inspects the compute resources available on the plat-
form, compiles the source code according to it and launches
execution. At the end, processed data is sent back to the host
system that orchestrates execution [9].

The parallel algorithm developed exploits thread-level
parallelism to perform the calculation of new LRIs. Process-
ing is performed on a pixel-per-pixel basis for all channels of
the system. The processing unity with smaller granularity-
level is the work-item.

2689

virtual

source

d
T

d
R
1

d
R
2

d
R
1
2
8

...

T
e
x
tu
re

(i,j)

k(a,b)

k(c,d)

Channel
array

Work-group 1Work-group 0

...
...

Fig. 2. Calculation of pixel (i, j) for the nth LRI. Illustration
of the influence of a virtual source point in the calculation of
the pixels of an LRI. Pixel with index (i, j) is processed by
a work-item in parallel with the processing of other pixels in
the same work-group.

3.1. Parallel calculation of LRIs

Figure 2 describes how pixels are influenced by each virtual
source. The processing is performed in parallel by all work-
items and one of two situations occur: either the pixel is under
the influence of a virtual source or it isn’t. This verification
implies the use of divergent (conditional) instructions, which
penalizes performance. However, parallelization is achieved
since each work-item processes in parallel one of the pixels
that are under the influence of a same virtual point (for those
who are outside, the work-item returns execution). Every two
work-groups are able to perform the parallel processing of a
complete LRI.

Pulse-echo distances are represented by dT and dR, which
are used to calculate the delay τn,m as shown in (4) and finally
obtain the depth sample number k indicated in (2).

The level of parallelism achieved increases (until a certain
limit) with the number of compute resources available. In the
case of a GPU, the processing of hundreds of pixels in parallel
is possible.

3.2. Using texture memory to accelerate computation

On the GPU, texture memory has latency times similar to
those of global memory. The main advantage of using this
type of memory lies on the level 1 cache capabilities associ-

ated with textures. Not only data used is maintained for reuse,
but also do its immediate neighboring elements, which is use-
ful in this particular algorithm. Therefore, analytical data is
loaded into textures before the kernel is launched. Then, data
is accessed by each work-item at element in the position given
by depth sample k previously calculated, in order to produce
αn,m [6]. This procedure basically consists of a weighted
summation of interpolated channel-domain samples for all N
array channels as described in (1).

In the case the OpenCL kernel is running on a CPU, where
texture memory does not exist, this functionality is obtained
using software emulation. However, it is worth noting that the
use of textures in this scenario is not recommended mainly
due to efficiency reasons.

4. EXPERIMENTAL RESULTS

4.1. Apparatus

The experimental results were obtained using the OpenCL C
API, interfaced with Matlab’s MEX-function, and the C con-
sole compiled with Visual Studio 2010. The computer has a
quad-core Intel Core i7 950 @3.07 GHz, 3GB of RAM mem-
ory, running Windows 7 Ultimate x86. The OpenCL devices
are an ATI Radeon HD6970 (Cayman) with 1536 shaders, a
NVIDIA Tesla C1060 with 240 cores. We must note that the
relation between performance vs. number of compute units
is not the same for both vendors, as NVIDIA indicates fewer
units. As an additional test, the algorithm was also run on the
CPU, to further demonstrate the computing potential of the
GPUs.

A Sonix-RP research scanner equipped with a pre-beamfo-
rmed data acquisition tool was used to collect the dataset
processed in the host. Ultrasound parameters are: frequency
– 10 MHz; transmit pulse shape – 2-cycle sinusoid; pulse rep-
etition frequency – 5 kHz. The synthetic aperture implemen-
tation is based on a scanner front-end that was reprogrammed
to fire according to a virtual point source configuration. It
uses 97 point sources in total (0.3 mm laterally spaced apart,
20 mm axially behind field of view), each formed from a
64-channel aperture. It performs one firing from each virtual
point source, swept from left to right side. The data acquisi-
tion is based on 128 channels received in parallel using the
pre-beamformed data acquisition tool, with 40 MHz sampling
and 12-bit resolution.

4.2. High frame-per-second LRI throughput calculation

To perform the experimental results we have run the same
OpenCL kernel on 3 different platforms: one multi-core CPU
and two many-core GPUs. We used 2 datasets which were ob-
tained using synthetic aperture beamforming: dataset 1 (DS1)
consists of a Perforated Plate, while dataset 2 (DS2) shows
random Dots. The selected aperture is 256 for all experi-
ments. Table 1 indicates the total computation times for gen-

2690

Table 1. Computation times for two datasets: Perforated Plate (DS1) and Dots (DS2) generating images with resolution
512×255 pixels.

Platform Radeon HD6970 GPU Tesla C1060 GPU Intel i7 950 CPU

Dataset 512×255 pixels DS1 DS2 DS1 DS2 DS1 DS2
Total memory operations time 695 ms 695 ms 1.068 s 1.058 s 187 ms 182 ms

Total kernel execution time 403 ms 382 ms 1.067 s 670 ms 24.349 s 20.221 s

50 100 150 200 250

100

200

300

400

500

600

700

800

900

1000

50 100 150 200 250

100

200

300

400

500

600

700

800

900

1000

(a) 1024×255 pxl. images gen. on ATI Radeon HD 6970

50 100 150 200 250

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250

50

100

150

200

250

300

350

400

450

500

(b) 512×255 pxl. images gen. on Intel i7 950

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

(c) 256×255 pxl. images gen. on NVIDIA Tesla C1060

Fig. 3. Perforated Plate (left) and Dots (right) images gen-
erated from datasets obtained using synthetic aperture beam-
forming. The images were generated by running the same
OpenCL kernel on three different multi-core platforms.

erating 97 LRIs. They include data transfers between host and
device, and kernel execution times on device. It can be seen
that the CPU platform presents lower transfer times, which
is natural since it is not limited by the PCIe bus, but it also
shows considerably higher kernel processing times due to a
lower number of processing cores available. The speedup ob-
tained from CPU to ATI GPU execution ranges from 22 to
30, while against the NVIDIA GPU it approximates 52 ∼ 60
times. The Radeon GPU is capable of processing more than
253 frames per second (fps), as the inspection of table 1 indi-
cates, achieving 1.35 GFLOPS for DS1 with 512×255 pixels.

Figure 3 demonstrates the code portability concept by

showing that all generated images are equivalent and that
the main difference is computation time. Many-core sys-
tems with superior capabilities, such as number of cores,
higher clock frequencies or memory bandwidth would run
the OpenCL kernel even faster, thus processing more fps.

5. RELATION TO PRIOR WORK

To our knowledge, this work is perhaps the first attempt to
investigate the feasibility of adopting a hardware-flexible par-
allel processing approach to execute synthetic aperture beam-
forming operations at real-time throughput. Based on devis-
ing portable software kernels using the OpenCL framework,
our approach inherently differs from previous CUDA-based
synthetic aperture beamformers that can only work on vendor-
specific hardware (NVIDIA) [6]. Also, it is not the same
as other solutions that attempt to use FPGAs [12], computer
clusters [13], and DSP platforms [14] for synthetic aperture
image computing purposes. From an ultrasound system de-
sign standpoint, our OpenCL-based solution should be more
favorable than others as its code portability allows the beam-
forming kernel to be hosted on a wide variety of comput-
ing hardware, from multi-core CPUs to many-core GPUs and
even FPGAs. This would provide ultrasound system design-
ers with more flexibility in designing novel hardware archi-
tecture for synthetic aperture ultrasound imaging.

6. CONCLUDING REMARKS

With the availability of code-portable parallel processing ker-
nels to handle beamforming operations, it becomes more fea-
sible to pursue practical realization of synthetic aperture ultra-
sound imaging whose image formation principles are known
to be computationally demanding. This work is therefore ex-
pected to contribute to the latest developments in advanced
ultrasound system design. It is worth noting that, besides
synthetic aperture beamforming, our OpenCL-based paral-
lel processing approach may be extended to other comput-
ing operations in synthetic aperture imaging. For instance, in
the delay-and-sum process, it may be of interest to include
an adaptive apodization module that applies signal-dependent
channel weighting. Such an adaptive beamforming strategy
is well considered to be computationally demanding as well.
Parallel processing, especially portable ones that can be ex-
ecuted on a variety of computing hardware, may provide an
answer to this technical hurdle.

2691

7. REFERENCES

[1] G. York and Y. Kim, “Ultrasound processing and com-
puting: Review and future directions,” Annu. Rev.
Biomed. Eng., vol. 1, pp. 559–588, 1999.

[2] J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and
M. H. Pedersen, “Synthetic aperture ultrasound imag-
ing,” Ultrasonics, vol. 44, Supplement, pp. e5–e15,
2006.

[3] S. I. Nikolov, K. L. Gammelmark, and J. A. Jensen, “Re-
cursive ultrasound imaging,” in Proc. IEEE Ultrasonics
Symp. IEEE, 1999, pp. 1621–1625.

[4] T. P. Chen and Yen-Kuang Chen, “Challenges and op-
portunities of obtaining performance from multi-core
CPUs and many-core GPUs,” in Proc. of the IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP’09), April 2009, pp. 613–616.

[5] H.K.-H. So, Junying Chen, B.Y.S. Yiu, and A.C.H. Yu,
“Medical ultrasound imaging: To GPU or not to GPU?,”
IEEE Micro, vol. 31, no. 5, pp. 54–65, 2011.

[6] B.Y.S. Yiu, I.K.H. Tsang, and A.C.H. Yu, “GPU-based
beamformer: Fast realization of plane wave compound-
ing and synthetic aperture imaging,” Ultrasonics, Fer-
roelectrics and Frequency Control, IEEE Transactions
on, vol. 58, no. 8, pp. 1698–17052, August 2011.

[7] CUDA Developer NVIDIA, “CUDA 5.0,” Nov. 2012.

[8] Khronos Group, “OpenCL 1.2,” Nov. 2011.

[9] B. R. Gaster, H. Lee, D. R. Kaeli, P. Mistry, and
D. Schaa, Heterogeneous Computing with OpenCL,
Morgan Kaufmann, 2012.

[10] G. Falcao, V. Silva, L. Sousa, and J. Andrade, “Portable
LDPC Decoding on Multicores Using OpenCL,” IEEE
Signal Processing Magazine, vol. 29, no. 4, pp. 81–109,
July 2012.

[11] S. Singh, “Computing without processors,” Communi-
cations of the ACM, vol. 54, no. 8, pp. 46–54, August
2011.

[12] J. A. Jensen, M. Hansen, B. G. Tomov, S. I. Nikolov,
and H. Holten-Lund, “System architecture of an exper-
imental synthetic aperture real-time ultrasound system,”
in Proc. IEEE Ultrason. Symp., 2007, pp. 636–640.

[13] F. Zhang, A. Bilas, A. Dhanantwari, K. N. Plataniotis,
R. Abiprojo, and S. Steriopoulos, “Parallelization and
performance of 3D ultrasound imaging beamforming al-
gorithms on modern clusters,” in Proc. ACM Int. Conf.
Supercomput., 2002, pp. 294–304.

[14] C. R. Hazard and G. R. Lockwood, “Theoretical assess-
ment of a synthetic aperture beamformer for real-time 3-
d imaging,” Ultrasonics, Ferroelectrics and Frequency
Control, IEEE Transactions on, vol. 46, pp. 972–980,
1999.

2692

