
GPU BASED IMPLEMENTATION OF RECURSIVE DIGITAL FILTERING ALGORITHMS

Dong-hwan Lee and Wonyong Sung

Department of Electrical Engineering and Computer Science, Seoul National University
Gwanak-gu, Seoul 151-744 Korea

Email: ldh@dsp.snu.ac.kr, wysung@snu.ac.kr

ABSTRACT

Recursive filtering is widely used for many signal processing
applications. Speeding-up the computation of recursive filtering
using many processing elements is difficult because of the depen-
dency problem. In this paper, massively parallel computation of
recursive filtering algorithms using GPGPUs (General Purpose
Graphics Processing Units) is studied. The proposed method
uses the multi-block parallel processing algorithm, where each
thread executes one block of data as independently as possible. To
resolve the dependency among threads, we develop a fast look-
ahead method that shows high efficiency even when thousands of
threads are used. The developed method has been implemented
using Nvidia GTX 285 GPU and shows over 15 times of speed-up
when compared to sequential CPU based implementations.

Index Terms— Recursive filtering, graphics processing unit
(GPU), parallel computation, look-ahead method

1. INTRODUCTION

General purpose graphics processing units (GPGPUs), such as
Nvidia’s GTX series hardware, contain more than one hundred
programmable processing elements on a chip, and hence they are
used for many computation intensive scientific and signal pro-
cessing applications. GPU based implementations typically em-
ploy thousands of threads not only to utilize all the processing
elements but also to overcome the delay of accessing slow global
memory. As a result, parallel algorithms developed for small scale
multi-core processors do not always show good efficiency in GP-
GPUs [1].

Recursive filtering, such as y[n] = a · y[n− 1] + x[n], is rep-
resented in a sequential manner, and parallel computation of mul-
tiple output samples is not obvious because computing y[n + 1]
needs the previous output sample, y[n]. This is often called the
data dependency problem. Although the dependency problem hin-
ders the parallel computation of recursive filters with any parallel

This work was supported by the Brain Korea 21 Project and the Na-
tional Research Foundation of Korea (NRF) grants funded by the Ministry
of Education, Science and Technology (MEST), Republic of Korea (No.
2012R1A2A2A06047297). Dong-hwan Lee was also financially supported by the
NRF of Korea under the Global Ph.D. Fellowship project.

architecture, such as SIMD and multi-core computers, this prob-
lem is much more severe with GPUs because the degree of paral-
lelism demanded is much higher.

In this research, we develop a GPU based massively parallel
computing program for an M th order recursive filtering equation.
In order to exploit thousands of threads available, the multi-block
parallel processing algorithm is utilized [2]. Especially, we pro-
pose a fast look-ahead method to increase the scalability of the
multi-block processing and obtain good efficiency even when the
number of threads is very large. In this algorithm, the input data
is divided into multiple blocks, and each block is assigned to each
thread. Then, each thread computes the particular solutions simul-
taneously. Note that the particular solutions do not need the initial
condition of the assigned block. After obtaining the particular so-
lutions, the initial condition for each block is produced using a
look-ahead method, and after then the complete solutions for each
block are computed independently by each thread. The conven-
tional look-ahead method consumes the time that is proportional
to the number of processing elements or threads, which does not
degrade the efficiency much in SIMD and multi-core architecture
but becomes a critical problem in GPGPUs where thousands of
threads need to be utilized. The developed fast look-ahead method
demands the time that is only proportional to log2 P , where P
is the number of processing elements. In GPU based implemen-
tations, the communication among thread-blocks demands much
time. The fast look-ahead algorithm is implemented to minimize
the number of inter-thread-block communication operations.

This paper is organized as follows. Section 2 discusses the
multi-block parallel processing algorithm including the proposed
fast look-ahead method. The implementation procedure using a
GPU is explained in Section 3. The experimental results using the
Nvidia GTX 285 Tesla architecture is shown in Section 4. Con-
cluding remarks are given in Section 5.

2. MULTI-BLOCK PROCESSING ALGORITHM WITH
FAST LOOK-AHEAD

There have been quite many previous researches on the parallel
computation of recursive equations, and their efficiency depends
on the data size and the number of processing elements. When
the number of data approximately equals to that of processing el-

2684978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]y[-1]

y[0] y[1] y[2] y[3] y[4] y[5] y[6] y[7]y[-1]

Fig. 1. Recursive doubling of 8 data samples.

x[0]

x[1]

x[L-1]

x[L]

x[L+1]

x[2L-1]

x[(P-1)L]

x[(P-1)L+1]

x[PL-1]

...

Fig. 2. Data layout for multi-block processing algorithm.

ements, the recursive doubling method shown in Fig. 1 is very
efficient [3]. This method computes the output of N data samples
in log2 N steps using N processing elements. When the number
of data is very large compared to that of processing elements, we
need to apply the recursive doubling many times until all the in-
put data are processed, which can hardly be efficient because the
number of operations for each data increases with the number of
processing elements. The multi-block processing method that as-
signs one block of data to each processor is much more efficient
when the number of data is very large.

2.1. Multi-block processing

The multi-block processing algorithm utilizes the fact that the so-
lution of a linear recursive equation consists of the particular and
the transient solutions. In this parallel computation scheme, the
data is distributed to a two dimensional L by P array as shown in
Fig. 2, where P is the number of processing units and L is the
length of one data block.

The nth output of kth data block is computed as follows:

y[kL+ n] = a · y[kL+ n− 1] + x[kL+ n], (1)

where 0 ≤ k ≤ P − 1 and 0 ≤ n ≤ L − 1. In this first order
recursive filtering equation, x[n] and y[n] are the input and output,
respectively, and a is the constant coefficient. We can reformulate
this equation as follows:

y[kL+ n] = an+1 · y[kL− 1] + z[kL+ n] (2)

and
z[kL+ n] = a · z[kL+ n− 1] + x[kL+ n] (3)

with z[kL−1] = 0. Note that y[kL+n] consists of two terms: par-
ticular solution z[kL+n] and transient solution an+1 · y[kL− 1].

block group
(a) step 1

(b) step 2

(c) step 3

Known(determined) block initial condition

Unknown block initial condition

Block initial condition with particular solution

Fig. 3. Multi-block processing algorithm for recursive filtering.

The particular solution can be computed by evaluating Eq. (3)
while assuming the initial condition z[kL − 1] to zero. Since the
initial conditions for all data blocks are assumed to be zero, there
exists no data dependency among the data blocks and the partic-
ular solutions of multiple data blocks can be computed in paral-
lel. In order to obtain the solutions with exact initial conditions
or complete solutions, we need to know the initial conditions for
data blocks. Note that the initial condition of the first data block is
initially given. Since we already obtained the particular solutions
z[k], we can compute the initial conditions, y[kL − 1] for k = 1
to P − 1, sequentially by using the following equation, which is
often called the look-ahead algorithm [2].

y[kL− 1] = aL · y[(k − 1)L− 1] + z[kL− 1], (4)

for k = 1 to P − 1. The parallel processing steps can be summa-
rized as follows [2, 4].

Step 1 (particular solution) Compute the particular solutions by
using Eq. (1) with zero initial conditions except the first data
block. This computation is conducted in parallel for all the
data blocks, but sequentially within a data block. It demands
approximately L time steps.

Step 2 (look-ahead) Calculate the initial condition of each data
block using Eq. (4). This computation is conducted sequen-
tially from the first to the last data block. This step takes
approximately P time steps.

Step 3 (complete solution) Compute the complete solutions by
executing the recursive filtering equation sequentially with
the input data and the block initial condition determined in
Step 2. Note that this step is conducted for every block in-
dependently and takes L time steps.

The computation procedure is illustrated in Fig. 3. The com-
putation time can be modeled as 2L+P . Since the execution time
for the look-ahead increases in proportion to the number of pro-
cessing elements, Step 2 becomes the bottleneck as P increases.

2685

2.2. Multi-block processing with fast look-ahead

The Step 2 of the conventional multi-block processing, which is
the serious bottleneck in GPU based computation, can be repre-
sented as follows:

y[L− 1] = aL · y[−1] + z[L− 1]

y[2L− 1] = aL · y[L− 1] + z[2L− 1]

· · · (5)

y[PL− 1] = aL · y[(P − 1)L− 1] + z[PL− 1].

We can notice that the above computation corresponds to eval-
uating a recursive equation of P data samples with the constant
coefficient of aL. Since the number of data is the same with the
number of processing elements, it is efficient to apply the recur-
sive doubling algorithm shown in Fig. 1. As a result, the time step
for the look-ahead is now reduced to log2 P . Unless the block
length, L, is very small, the time consumed at the Step 2 is not a
bottleneck anymore.

2.3. Multi-block processing for M th order recursive filtering

The first order case can be extended to the M th order linear recur-
rence equation as follows:

y[n] =
M∑
i=1

ai · y[n− i] + x[n], (6)

where x[n], y[n], and ai are the input data, output data, and coef-
ficients, respectively. This equation can be represented in a vector
form [5]:

Y [n] = A · Y [n− 1] +X[n], (7)

where

Y [n] =

y[n]

y[n− 1]
...

y[n−M + 1]

 , X[n] =

x[n]
0
...
0

 (8)

and

A =

a1 a2 · · · aM−1 aM
1 0 · · · 0 0
0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0

 (9)

Similar to the first order case, the nth output of the kth data block
can be represented in a vector form as follows:

Y [kL+ n] = A · Y [kL+ n− 1] +X[kL+ n], (10)

where 0 ≤ k ≤ P − 1 and 0 ≤ n ≤ L − 1. We can manipulate
this equation similar to Eq. (2) and (3), thus we have

Y [kL+ n] = An+1 · Y [kL− 1] + Z[kL+ n] (11)

z[9] z[19]

x[10]

x[19]

x[0]

x[9]

x[20]

x[29]

z[29]

x[30]

x[39]

x[50]

x[59]

z[39] z[59]

Recursive doubling

Recursive doubling Recursive doubling Recursive doubling

x[40]

x[49]

z[49]

0 y[9] y[19] y[29] y[49]y[39]

y[29] y[89]

y[119]

thread-block 0 thread-block 1

y[10]

y[19]

y[0]

y[9]

y[20]

y[29]

y[30]

y[39]

y[50]

y[59]

y[40]

y[49]

y[89] y[109]y[99]

y[90]

y[99]

y[110]

y[119]

y[100]

y[109]

x[90]

x[99]

x[110]

x[119]

z[99] z[119]

x[100]

x[109]

z[109]

thread-block 3

Parallel-add Parallel-add Parallel-add

0

step 3

step 2

step 1

Fig. 4. Implementation of parallel processing algorithm in GPUs.

and
Z[kL+ n] = A · Z[kL+ n− 1] +X[kL+ n]. (12)

Since Y [kL + n] also consists of the particular solution Z[kL +
n] and the transient solution An+1 · Y [kL − 1], the multi-block
processing can be applied in a similar way to the first order case.

3. GPU BASED PARALLEL COMPUTATION OF
RECURSIVE FILTERING

We use the Nvidia GTX series architecture and CUDA based de-
velopment environment. Nvidia GTX 285 GPU contains 30 SMs
(streaming multiprocessors), and each SM has 8 CUDA cores.
Since a GPU employs multi-thread scheduling in order to hide the
memory access latency and resolve pipelining hazards, the num-
ber of thread-blocks in a parallel program is usually much larger
than that of SMs. In GPU based implementations, the number of
thread-blocks is usually more than 100, and the number of threads
in each thread-block is usually between 32 and 128. The commu-
nication within each thread-block is very fast, however that among
the thread-blocks is relatively slow [1]. Thus, we need to minimize
the number of inter-thread-block communication operations.

The input data of the length N is divided into blocks, and
each block is assigned to a single thread. In this paper, we denote
the number of thread-blocks as ntb and assume that each thread-
block contains nt threads. Thus, the block length L is equal to
N/(ntb · nt). For example, the GPU based implementation with
ntb = 4 and nt = 3 is illustrated in Fig. 4. At the first stage
of computation, each thread needs to read L input samples from
the global memory to compute the particular solutions. For the
coalesced memory access, we assign a half warp (16 threads in
GTX 285) of threads to read one data block as shown in Fig. 5.
During the first iteration, 16 threads (threads 0 ∼ 15 in Fig. 5)
read the first data block (x[0] ∼ x[15]), and the other 16 threads
(thread 16 ∼ 31) access the second data block (x[L] ∼ x[L+15]).
This results in only two DRAM access transactions for reading 32
samples. Note that consecutive data samples in DRAM can be

2686

thread 0

thread 1

thread 14

thread 15

x[0]

x[1]

x[14]

x[15]

Iteration 1 Iteration 2

x[L]

x[L+1]

x[L+14]

x[L+15]

thread 16

thread 17

thread 30

thread 31

x[2L]

x[2L+1]

x[2L+14]

x[2L+15]

x[3L]

x[3L+1]

x[3L+14]

x[3L+15]

Fig. 5. Global memory access for Steps 1 and 3.

accessed quite efficiently. Since the current kernel needs to be ter-
minated for thread synchronization, the data to use later should be
stored in the global memory.

At the second stage of computation, the fast look-ahead rou-
tine that employs the recursive doubling is conducted in two steps.
At the first step, the recursive doubling is performed within each
thread-block and yields the last output samples. This step is con-
ducted by every thread-block, and the number of output samples
is now reduced to ntb. At the second step, the ntb output samples
are combined by recursive doubling. This step needs a separate
kernel, and uses only one thread-block that employs ntb threads.

At the third stage of computation, the complete solutions can
be obtained with the global memory access scheme shown in Fig.
5. Finally, all the output samples are written back to the global
memory.

4. EXPERIMENTAL RESULTS

We use the Nvidia GTX 285 running at 1,476 MHz [6]. The
global memory size of the GTX 285 is 1 GByte and the mem-
ory bandwidth that employs a 512 bit bus can be as high as 159.0
GB/sec. CUDA (Compute Unified Device Architecture) of Nvidia
is used for C language based programming of the GPU [1]. For
the purpose of comparison, a few CPU-based versions were also
implemented, which included sequential (single-core non-SIMD)
and parallel (four core with 4-way SIMD) programs. A desktop
PC with an Intel Core2 Quad CPU (Q9550) running at 2.83 GHz
clock was used. During the experiments, 4 Mega data samples are
used. We found the optimum parameters for ntb and nt from the
experiments. Usually, nt of 32 yielded the best results, while the
other parameters that resulted in the best performance varied with
the order of the recursive equation.

Recursive filtering with orders of 1, 2, 4, and 8 were imple-
mented in parallel and their performances in the CPU and the
GPU are compared. Table 1 summarizes the implementation re-
sults, and the developed method shows significant speed-ups when
compared to the sequential and parallel CPU implementations.
The speed-up with respect to the sequential CPU implementation
is over 2,000 % when the filer order is higher than 4. Also, we
can find that the speed-up of the GPU-based implementations in-

Table 1. Comparison of CPU and GPU implementations when 4
Mega samples are used (time is in ms, parentheses show speed-up
w.r.t. sequential CPU)

M = 1 M = 2 M = 4 M = 8

Sequential on a CPU 11.079 15.318 28.56 46.266

Parallel on a CPU 11.076 11.247 11.504 11.657

Parallel on a GPU
0.728 0.902 1.317 2.058

(1,522%) (1,698%) (2,169%) (2,248%)

creases as the order of the equation goes up. This result occurs
because recursive filtering consumes more arithmetic operations
per sample as the order of the equation becomes higher, and GPU-
based parallel processing architecture is more efficient in handling
arithmetic-intensive problems.

5. CONCLUDING REMARKS

We have implemented recursive filtering equations using GPUs
(Graphics Processing Units). Although recursive filtering incurs a
dependency problem and GPU based implementations demand a
large degree of parallelism, it was possible to obtain a significant
speed-up by using a multi-block processing algorithm with fast
look-ahead. This method can be extended to the parallel compu-
tation of adaptive filters.

6. REFERENCES

[1] NVIDIA Corporation., “NVIDIA CUDA (Compute Unified
Device Architecture) programming guide,” [Online]. Avail-
able: http://developer.nvidia.com/object/cuda.html.

[2] W. Sung, S.K. Mitra, and B. Jeren, “Multiprocessor imple-
mentation of digital filtering algorithms using a parallel block
processing method,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 3, no. 1, pp. 110–120, Jan. 1992.

[3] P. Kogge and H. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations,” IEEE
Transactions on Computers, vol. C-22, no. 8, pp. 786–793,
Aug. 1973.

[4] J. Ahn, H. Chang, J. Cho, and W. Sung, “SIMD proces-
sor based implementation of recursive filtering equations,” in
Proc. of IEEE Workshop on Signal Processing Systems (SiPS),
Oct. 2009, pp. 087–092.

[5] C. Burrus, “Block implementation of digital filters,” IEEE
Transactions on Circuit Theory, vol. 18, no. 6, pp. 697–701,
Nov. 1971.

[6] NVIDIA Corporation., “NVIDIA GeForce GTX 285,” [On-
line]. Available: http://www.geforce.com/hardware/desktop-
gpus/geforce-gtx-285.

2687

