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ABSTRACT

In this paper, we analyze the VLSI implementation trade-
offs for linear data detection in the uplink of large-scale
multiple-input multiple-output (MIMO) wireless systems.
Specifically, we analyze the error incurred by using the sub-
optimal, low-complexity matrix inverse proposed in Wu et
al., 2013, ISCAS, and compare its performance and com-
plexity to an exact matrix inversion algorithm. We propose
a Cholesky-based reference architecture for exact matrix in-
version and show corresponding implementation results on
an Virtex-7 FPGA. Using this reference design, we perform a
performance/complexity trade-off comparison with an FPGA
implementation for the proposed approximate matrix inver-
sion, which reveals that the inversion circuit of choice is
determined by the antenna configuration (base-station anten-
nas vs. number of users) of large-scale MIMO systems.

Index Terms— Large-scale MIMO, linear detection, ap-
proximate matrix inversion, FPGA implementation.

1. INTRODUCTION

Large-scale multiple-input multiple-output (MIMO) is an
emerging wireless data transmission technique, which uses a
large number of the antennas at the base station (BS) to serve
a small number of users simultaneously and in the same fre-
quency band [1, 2]. Besides improving the spectral efficiency
and link reliability compared to conventional (small-scale)
MIMO systems [2, 3], large-scale MIMO enables the deploy-
ment of low-complexity precoding methods in the downlink
and inexpensive radio-frequency circuitry that have the po-
tential to reduce the operational power consumption and
hardware costs in the base station (BS) [1, 4].

1.1. Low-complexity data detection

For the large-scale MIMO uplink, where the users transmit
data to the BS, low-complexity and sub-optimal data detec-
tion methods are of paramount importance, as optimal or even
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sub-optimal detection methods such as maximum-likelihood
(ML) or linear minimum mean-squared error (MMSE) detec-
tion result in excessive computational complexity [2]. In or-
der to overcome the complexity bottleneck of linear data de-
tection methods in large-scale MIMO systems, we recently
proposed a low-complexity, approximate inversion method
in [5]. However, the impact of the antenna configuration on
the performance and hardware complexity of this approxi-
mate inversion method has not been analyzed systematically.

1.2. Contributions

In this paper, we systematically analyze the implementation
trade-offs associated with linear data detection in the large-
scale MIMO uplink. We show analytically that the approx-
imation error caused by the approximate inversion method
of [5] is proportional to the number of users squared and in-
versely proportional to the number of BS antennas. We then
compare the approximate inversion method to a Cholesky-
based exact inverse and investigated the associated computa-
tional complexity. We furthermore present FPGA implemen-
tation results for both inversion methods for various antenna
configurations, which we use to study the associated hardware
complexity/SNR performance trade-offs. We finally demon-
strate that the approximate inverse is preferred for systems
having large BS-antenna-to-user ratios, whereas using an ex-
act matrix inversion circuit is beneficial in systems having
small BS-antenna-to-user ratios.

2. LARGE-SCALE MIMO UPLINK

We next introduce the system model and outline the linear
detection algorithm investigated in the remainder of the paper.

2.1. System model

We consider the large-scale multi-user MIMO uplink with N
antennas at the BS communicating with M < N single
antenna users. The transmitted bit stream for each user
is first encoded using a channel encoder and then mapped
to constellation points in the set O. The transmit vector
s = [s1, . . . , sM ]T with s ∈ OM containing the transmit
symbols for all M users, is then transmitted over the wireless
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channel modeled as y = Hs + n, where y = [y1, . . . , yN ]T

corresponds to the vector received at the BS, H ∈ CN×M

is the (tall and skinny) uplink channel matrix, and n ∈ CN

models additive noise at the BS; the entries of H and of n are
assumed to be i.i.d. zero-mean Gaussian with unit variance
and N0, respectively. We furthermore set E{|si|2} = Es, ∀i.

2.2. Linear detection for large-scale MIMO

The task of the BS is to compute soft-estimates in the form of
log-likelihood ratios (LLRs) for the coded bits given the chan-
nel matrix1 H and the receive-vector y [6]. Since the number
of BS antennas N and the number of users M is expected to
be much larger than that of conventional (small-scale) MIMO
systems, low-complexity detection algorithms are mandatory
for practical realizations of large-scale MIMO [2].

To this end, we deploy the low-complexity, linear detec-
tion method proposed in [7]. The algorithm starts by com-
puting the matched-filter (MF) output yMF = HHy and the
M ×M Gram matrix G = HHH, followed by computing

A = GEs +N0IM . (1)

This regularized matrix is then used to generate an estimate
of the transmit vector s as

ŝ = A−1yMF = A−1Gs + A−1n. (2)

From this estimate, entry wise LLR-values can be computed
by approximating the residual noise plus interference as i.i.d.
zero-mean Gaussian distributed (see [7] for the details).

3. ERROR ANALYSIS OF
APPROXIMATE MATRIX INVERSION

Computation of the inverse A−1 of (1) causes the main com-
plexity of the detection algorithm outlined above. Inverting
A can result in very high complexity for large-scale MIMO
systems as it requires O(M3) operations. Hence, an efficient
matrix inversion approximation method was proposed in [5]
to arrive at cost-effective hardware implementations. We next
summarize the idea behind this approximation method and
then provide a corresponding error analysis.

3.1. k-term Neumann series approximation

To reduce the complexity of computing A−1 compared to an
exact inversion, we start by the following Neumann series
proposed in [5]:

A−1 =
∑∞

n=0(X
−1(X−A))nX−1, (3)

which holds if A satisfies limn→∞(I − X−1A)n = 0. By
decomposing A in (1) into A = D+E with D being the main

1In practice, channel-state information is acquired through training pilots.

and E the off diagonal of A, and by keeping the first k terms
of (3) only, we obtain the following k-term approximation:

Ã−1k =
∑k−1

n=0(−D−1E)nD−1. (4)

For a k = 2 term approximation, for example, we get

Ã−12 = (IM −D−1E)D−1 = D−1 −D−1ED−1, (5)

which only requires O(M2) operations compared to the
O(M3) complexity required by an exact inversion.

3.2. Error analysis

We next analyze the impact of the approximate inverse in (4)
when used as a substitute for A−1. To this end, let

Θk =
∑∞

n=k(−D−1E)nD−1 = (−D−1E)kA−1

be the residual error of Ã−1k . Using Ã−1k rather than A−1 in
the detection process (2) leads to

s̃ = Ã−1k yMF = (A−1 −Θk)y
MF = (I−ΘkA)A−1yMF,

which reveals that the approximation error depends on ΘkA.
The following theorem characterizes the probability that this
approximation error exceeds a given threshold α ≥ 0.

Theorem 3.1. Let N > 4 and H ∈ CN×M be i.i.d. complex
Normal distributed. Then, for k > 0 and N0 ≥ 0, we have

Pr[‖ΘkA‖2F > α] ≤
√
2M2(N + 1)

(N − 4)2α
1
k

. (6)

Proof. The proof follows from standard norm inequali-
ties and Markov’s inequality applied to the left-hand side
of (6), and by bounding E[‖Θ1A‖2F ] using properties of Chi-
squared random variables for the entries in D and E [8]. The
details of the proof are omitted due to space constraints.

Theorem 3.1 reveals that for a given threshold α, the
approximation error can be arbitrarily small by increasing
the number of BS antennas N , while keeping the number
of users M fixed. Furthermore, the approximation error de-
creases with M2/N , which implies that a small number of
Neumann series terms (e.g., k = 2) results in a good ap-
proximation to the exact inverse A−1 in large-scale MIMO
systems having significantly more BS antennas than users.

4. REFERENCE IMPLEMENTATION AND
COMPLEXITY COMPARISON

To compare the above approximate inversion with exact ma-
trix inversion on a hardware-implementation level, we next
present a Cholesky decomposition-based exact matrix inver-
sion architecture. We then compare its implementation with
the approximate inversion architecture proposed in [5].
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Table 1. Complexity comparison of the k-term Neumann series ap-
proximation and the Cholesky decomposition.

Multiplications Additions

k = 1 approx. 0 0
k = 2 approx. 4M(M − 1) 2(M2 −M)
Cholesky dec. 2M3 +M2 +M/3 2M3/3 + 4M/3

4.1. Exact matrix inversion via Cholesky decomposition

We chose the Cholesky decomposition as a baseline for exact
matrix inversion, since it exhibits a smaller number of opera-
tions compared with other inversion algorithms such as direct
matrix inversion, QR decomposition, or LU factorization [9].
In the uplink, the detector requires the explicit inverse (mainly
to compute the noise-plus-interference variance), which re-
quiresN instances of forward/backward substitution. In what
follows, we exclusively focus on the Cholesky decomposi-
tion, as the complexity required by forward and backward
substitution is negligible in large-scale MIMO systems, i.e.,
of orderO(N2), compared to theO(N3) complexity required
by the Cholesky decomposition itself.

In Table 1, we compare complexity of the Cholesky de-
composition with the approximate inversion for the cases k =
1, 2. Since channel matrices are complex-valued, we con-
vert the complex-valued operations to their real-valued equiv-
alents, i.e., we assume 4 real-valued multiplications and 2 ad-
ditions for 1 complex multiplication, and 2 real-valued addi-
tions for 1 complex addition. We see that the approximate
matrix inversion requires less operations than the Cholesky
decomposition for M > 0; in addition, for k = 2 the ap-
proximate inverse scales with O(M2), whereas the Cholesky
decomposition scales with O(M3). We note that if consid-
ering the complexity required by forward/backward substitu-
tion, the complexity difference is even more pronounced.

4.2. Cholesky decomposition architecture

To compare the performance and complexity of both in-
version circuits, we next detail a VLSI architecture of the
Cholesky decomposition suitable for large-scale MIMO sys-
tems. The proposed Cholesky decomposition unit factor-
izes A into LLH using a systolic array, where L is a lower-
triangular matrix. The jth diagonal entry of L is computed as

Ljj =
√

(Ajj −
∑j−1

k=1 LjkLH
jk); the off-diagonal element in

row i and column j below the diagonal i > j, is computed
as Lij = (Aij −

∑j−1
k=1 LikL

H
jk)/Ljj , which requires one

real-valued reciprocal. This algorithm is sequential in nature,
as the division operation is executed after the square root
operation. To arrive at high-throughput architecture, we par-
allelize these two operations. Specifically, we first compute
Sj = Ajj−

∑j−1
k=1 LjkL

H
jk andMij = Aij−

∑j−1
k=1 LikL

H
jk in

parallel. Then, Ljj =
√
Sj and Rj = 1/

√
Sj are calculated

in parallel. Finally, Lij =MijRj is computed.

Table 2. Implementation results of approximate inversion and
Cholesky decomposition on a Virtex-7 XC7VX1140T FPGA.

Unit N ×M Slices / DSP48 Freq. / Latency
[MHz] / [cycles]

Approx. [5] 32× 4 1095 (0.6%) / 9 (0.3%) 301 / 52
Cholesky 32× 4 555 (0.3%) / 36 (1.1%) 281 / 94

Approx. [5] 128× 8 3985 (2.2%) / 21 (0.6%) 285 / 55
Cholesky 128× 8 5083 (2.9%) / 280 (8.3%) 219 / 202

4.3. Square root and inverse square root units

To further enhance the throughput of the systolic array, we de-
signed dedicated square root and inverse square root units for√
Sj and 1/

√
Sj , respectively. We follow the approach put

forward in [7] to improve numerical stability. Concretely, the
value Sj = 2my is shifted such that y ∈ [1, 4), with m being
an even number. The results of

√
y and 1/

√
y are obtained

using separate lookup tables (LUTs). Finally, the result of√
y is multiplied by 2−m/2 to compensate for the initial shift;

similarly, the result of 1/
√
y is multiplied by 2m/2.

4.4. Approximate matrix inversion architecture

As detailed in [5], the approximate matrix inversion imple-
mentation consists of a Gram-matrix computation unit and a
unit computing the k = 2 approximate inverse in (5). The
Gram matrix unit corresponds to an M ×M lower-triangular
systolic array, where each processing element (PE) consists
of a multiply-and-accumulate (MAC) unit. This architecture
requires two different PEs, for the diagonal and off-diagonal
elements in G, requiring a total of (3M2+M)/2 multipliers.

In the approximate inversion unit, the ith diagonal entry
of Ã−12 , i.e., D−1ii = (Gii + N0)

−1 is computed with a ded-
icated reciprocal unit. For the off-diagonal element in row i

and column j of Ã−12 , we compute D−1ii GijD
−1
jj , which re-

quires one real-valued multiplication and a real-by-complex
multiplication. In total, this module needs three multipliers.

4.5. Fixed-point design and FPGA implementation

We implemented both the Cholesky decomposition unit and
the approximate inverse each with a Gram computation unit
on a Virtex-7 FPGA using Xilinx Vivado High-Level Synthe-
sis 2012. The input and output word length is 18 bit. All mul-
tiplications have been mapped to DSP48E1 slices. Each LUT
is realized using a block-RAM (RAMB18E1) having 1024
entries and a word length of 18 bit.

We parameterized the approximate inverse and Cholesky
decomposition unit for different antenna configurations to
explore the resulting FPGA resources and decomposition
throughput. The results for 32 × 4 and 128 × 8 are sum-
marized in Table 2, and include the Gram computation unit
detailed in [5]. The Cholesky decomposition unit requires
considerably more clock cycles than the approximate in-
version unit; in addition, the maximum clock frequency of
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(a) BLER performance for M = 4 users.
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(b) BLER performance for M = 8 users. (c) Performance/complexity trade-off.

Fig. 1. (a), (b) Large-scale MIMO uplink block error-rate (BLER) performance; “Fix” indicates fixed-point performance. (c) Perfor-
mance/complexity trade-off between the approximate matrix inversion (k = 2) and Cholesky decomposition units; circles indicate the
performance and complexity of exact inversion using the Cholesky decomposition and triangles represent the approximate inversion unit.

Cholesky decomposition is lower. Moreover, the area utiliza-
tion of the approximate inversion is much lower than that of
the Cholesky decomposition in the used Virtex-7 FPGA.

5. PERFORMANCE/COMPLEXITY TRADE-OFFS

We first analyze the resulting block error rate (BLER) per-
formance using numerical simulations for both algorithms.
Then, we characterize the performance/complexity trade-offs
using simulation and FPGA implementation results.

5.1. Uplink block error-rate performance

We simulate a coded MIMO-OFDM system with 128 sub-
carriers, 16-QAM, and assume a 10 m linear antenna array,
where the antennas are equally spaced similarly to [10]. We
use the WINNER-Phase-2 model [11] to generate the channel
matrices. At the BS, we use the soft-output MMSE detector
outlined in Sec. 2.2 (see [7] for the details) in combination
with a rate-5/6 soft-input Viterbi decoder.

The resulting block error-rates (BLERs) are shown in
Figs 1(a) and 1(b) for M = 4 and M = 8 users. The approx-
imate inversion method with k = 2 (“Approx2” in Fig. 1)
is able to approach the performance of an exact matrix in-
version (“Cholesky” in Fig. 1) for systems having a large
number of BS antennas N . The approximate method incurs
an error floor or small-scale systems. In addition, for a given
N , the error floor increases as the number of users M in-
creases. These trends are consistent with Theorem 3.1, where
the error bound scales with M2/N . Finally, we see that the
approximate inverse significantly outperforms the MF detec-
tor (“Approx1” in Fig. 1), which is typically considered for
low-complexity detection in large-scale MIMO systems [1].

5.2. Performance/complexity trade-off

Based on the simulated BLER and our FPGA implementation
results, we now analyze the performance/complexity trade-
offs associated with the approximate matrix inversion and the

Cholesky decomposition. To this end, we plot the associated
hardware complexity against the minimum SNR required to
achieve 1% BLER2 in Fig. 1(c). Since both designs are dom-
inated by multipliers, we define hardware complexity as the
product of the number of multipliers and the time required to
compute the Gram matrix plus the (approximate) inverse.

From Fig. 1(c), we see that the hardware complexity of
the Cholesky-based inverse is very large and does not depend
on the number of BS antennas. The hardware cost of the ex-
act inverse is dominated by Cholesky decomposition, which
consumes a significant portion of the available multipliers. In
contrast, the hardware complexity for the approximate inverse
is roughly one order of magnitude smaller.

In addition, for large ratios between the number of BS an-
tennas to the number of usersN/M , we see that the SNR per-
formance of the approximate inverse and the exact inverse are
very similar. For small ratios N/M , the performance differ-
ence between the approximate inverse and the exact inverse is
significantly larger, caused by the error induced by the 2-term
approximation (5). In fact, for 16× 4 and 32× 8, the approx-
imate inverse is unable to achieve 1% BLER (cf. Figs. 1(a)
and 1(a)). In these cases, an exact inverse (e.g., using our
Cholesky decomposition circuits) is necessary.

5.3. Discussion

We conclude that for large-scale MIMO systems where the
number of BS antennas is much larger than the number of
users, the approximate matrix inversion proposed in [5] out-
performs an exact Cholesky-based method in terms of the
performance/complexity trade-off, i.e., both methods achieve
similar BLER performance, while the approximate inverse re-
quires one order of magnitude less hardware complexity. For
MIMO systems where the number of BS antennas is not much
larger than the number of users—resembling to conventional
(small-scale) MIMO systems—an exact inverse is necessary
to avoid poor error-rate performance.

2A minimum BLER of 1% is specified in IEEE 802.11n, for example.
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