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ABSTRACT

Emerging mobile applications, such as augmented reality, de-
mand robust feature detection at high frame rates. We present
an implementation of the popular Scale-Invariant Feature
Transform (SIFT) feature detection algorithm that incorpo-
rates the powerful graphics processing unit (GPU) in mobile
devices. Where the usual GPU methods are inefficient on mo-
bile hardware, we propose a heterogeneous dataflow scheme.
By methodically partitioning the computation, compressing
the data for memory transfers, and taking into account the
unique challenges that arise out of the mobile GPU, we are
able to achieve a speedup of 4-7x over an optimized CPU
version, and a 6.4x speedup over a published GPU imple-
mentation. Additionally, we reduce energy consumption by
87 percent per image. We achieve near-realtime detection
without compromising the original algorithm.

Index Terms— computer vision, mobile computing, fea-
ture detection, graphics processing unit (GPU), OpenGL for
Embedded Systems (OpenGL ES)

1. INTRODUCTION

The recent development of low-cost, high-quality cameras in
mobile devices has generated enormous interest in mobile
computer vision applications, such as face detection and aug-
mented reality [1, 2, 3]. Scale-invariant interest points, or
features, are essential to many computer vision tasks, such
as object recognition and tracking, and will continue to gain
relevance in the realm of mobile computing [4]. The Scale-
Invariant Feature Transform (SIFT) is a practical algorithm
for detecting and describing features that are invariant to scal-
ing and rotation, and partially invariant to affine transforma-
tion, illumination, noise, and partial occlusion [5].

However, computer vision algorithms such as SIFT are
computationally complex, making it difficult to meet the de-
mands of emerging mobile applications. The limitations of
mobile hardware and the lack of programming tools prevent
feature detection algorithms from being implemented in re-
altime applications. In addition, reliance on the relatively
small batteries in mobile devices dramatically increases the
concern of power consumption in computer vision applica-
tions, which can occupy the power-hungry CPU for long pe-
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riods of time. Seeking to accelerate the process, we enlist the
help of general-purpose computing on graphics processing
units (GPGPU). Graphics processing units (GPUs) are cost-
effective processors that far exceed CPUs in computational
throughput on parallel tasks [4, 6]. By methodically partition-
ing the workload between the GPU and CPU and organizing
the data for efficient computation, we are able to achieve sig-
nificant speedup over an optimized CPU version and related
GPU work, and drastically reduce total energy consumption.

2. PRIOR WORK

GPUs have been shown to provide great speedup on a wide
range of computer vision algorithms, including SIFT [7, 8,
9, 10]. However, this success has mostly been confined to
desktop GPU applications. Firstly, mobile hardware has a
host of limitations that make GPGPU development consid-
erably more challenging. Traditional GPGPU methods call
for storage and processing of as much data as possible on the
GPU [11], but this is not practical on mobile devices. Without
support for dynamic branching or asynchronous readback, we
must rethink the way that we process data on the GPU [12].
Secondly, programming models supporting GPGPU such as
CUDA and OpenCL are unavailable on most mobile devices,
forcing developers to use OpenGL for Embedded Systems
(OpenGL ES), which was designed for graphics [13]. Al-
though some algorithms, expressing a high degree of paral-
lelism, have been successfully accelerated using OpenGL ES
[2, 3, 14], the few mobile GPU implementations of SIFT of
which we are aware were not fast enough to support emerging
applications [12], due to frequent branching in the later stages
of the algorithm, and the considerable overhead of CPU-GPU
memory transfers.

To overcome these obstacles, we rework the algorithm’s
dataflow to perform the most time-consuming and inherently
parallel tasks on the GPU, leaving the rest for the CPU and
minimizing memory transfers. Additionally, we utilize an ef-
ficient data packing scheme that reduces the amount of data
that must be transferred, simultaneously maximizing the ef-
ficiency of OpenGL ES rendering operations. Because many
of the competing algorithms express a similar degree of par-
allelism, our methods could easily be extrapolated to a wide
range of algorithms, allowing developers to tailor our tech-
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Fig. 1. SIFT detector memory access pattern. Top scale: Ex-
trema detection, Middle: Extrema, GSS and DoG, Bottom:
Extrema and DoG.

niques to specific applications [9, 15].
3. SIFT OVERVIEW

There are two major steps to extracting features from an im-
age: detection and description. Feature detection identifies
the spatial locations and dominant orientations of interest
points, while feature description provides criteria for match-
ing. We focus on the feature detection phase of the algorithm
because its inherent data parallelism makes it a good candi-
date for GPU acceleration. We now describe the major stages
of the SIFT detector:

In order to achieve scale invariance, we generate multiple
copies of the input image through repeated Gaussian smooth-
ing, each representing the scene at a different scale, which are
collectively known as the Gaussian Scale Space (GSS) pyra-
mid [5]. Once we have smoothed to twice the original scale,
we downsample the result and begin the next octave of the
pyramid.

We then construct the Difference of Gaussians (DoG)
pyramid by subtracting pairs of successive images in the GSS
Pyramid pixel-by-pixel. This approximates the well-studied
Laplacian of Gaussian function [16]. Keypoints are identified
as local extrema in the DoG pyramid, by comparison with
26 neighbors in 3 X 3 regions at the current and neighboring
scales. Finally, some keypoints are rejected by local contrast
and edge detection thresholds, and the remaining locations
are refined to sub-pixel accuracy by Gaussian elimination.

With keypoint locations known, we determine their orien-
tations to provide rotational invariance. The gradient pyramid
is constructed by taking the grayscale intensity gradient of the
relevant GSS pyramid levels at each pixel. Local orientations
are assigned to each keypoint by converting the gradients in a
neighborhood around each keypoint to polar form, and accu-
mulating their weighted magnitudes into a histogram of orien-
tations, where up to four histogram maxima become keypoint

Table 1. Profiling results of major stages of the algorithm on
CPU and GPU, on the Google Nexus 7 with Tegra 3 system-
on-chip, with an average of 88 keypoints per image. Our im-
plementation is traced in bold and italicized.

. Time (ms)
Type of task Stage of algorithm On CPU [ On GPU
GSS Pyramid 734.3 28.2
Diff. of Gaussians 3.6 4.5
Computation Extrema detection 5.1 32.8
Keypoint Refinement 0.8 N/AT
Polar Gradient 45.0 332
Load image to GPU 0.5
Memory GSS Pyramid readback 23.5
transfer Keypoint readback 0.8
Gradient readback 21.7

TKeypoint refinement is not implemented on GPU, due to the lack of support for dy-
namic looping.

orientations.

4. IMPLEMENTATION DETAILS

We present an efficient SIFT detector for mobile devices, us-
ing a heterogeneous methodology. Code was written for the
Android Native Development Kit with OpenGL ES 2.0.

Our main contributions consist of methodical partitioning
of the workload between the CPU and GPU, efficient packing
of image data into GPU texture memory, and on-the-fly code
generation for branch-free convolution in graphics hardware.
Each of these design decisions allows us to improve upon the
work of Kayombya in frame rate and energy efficiency [12].

4.1. Efficiently-partitioned heterogeneous computation

Careful partitioning of the workload between the CPU and
GPU significantly improves processing ability over other
SIFT implementations [12]. Fig. 1 shows the memory access
pattern for key stages of the algorithm. Table 1 shows that of
the major stages of the SIFT detector, Gaussian smoothing is
by far the most expensive, and the only one with the speedup
to warrant the overhead of GPU memory transfers. Extrema
detection performed very poorly on the GPU due to scalar
comparisons and the lack of support for dynamic branching
in mobile GPUs. While the gradient was accelerated by the
GPU, the readback time was prohibitive. All other operations
were cheap on both processors, and would not warrant the
memory transfer overhead of GPU acceleration.

These data led us to compute only the GSS pyramid on the
GPU, and leave the rest for the CPU, as seen in Fig. 2. The de-
cision is motivated by the unique challenges of mobile GPUs,
in which data readback stalls the rendering pipeline, and thus
cannot be hidden by concurrent computation, resulting in the
significant overheads seen in Table 1 [13]. We further reduce
the number of memory transfers by downsampling pyramid
levels on the GPU, rather than performing a CPU downsam-
ple and subsequent memory transfer. The resulting program
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Fig. 2. Proposed dataflow. Extrema and refinement combined
in diagram.

completes the SIFT detector with only one GPU to CPU trans-
fer per pyramid level, and one CPU to GPU transfer in total.

4.2. GPU data compression by pixel reordering

We implement an efficient pixel reordering scheme that
tightly packs data into GPU memory, reducing memory trans-
fer time and accelerating OpenGL ES rendering operations.
Images are stored as textures in OpenGL ES, where each
pixel of a texture is called a “texel.” The standard texture for-
mat is RGBA, where each texel contains separate red, blue,
green, and alpha channels [13]. We reorder the input image
so that every 2 x 2 grayscale square is stored as one RGBA
texel, with one pixel per channel, as seen in Fig. 3.
We define arithmetic intensity as follows [6]:

. .. . No. of additions and multiplications
arithmetic intensity =

No. of texture fetches

Packing the data in this way reduces the total number of tex-
ture fetches in both Gaussian smoothing and downsampling
by a factor of four. Using this scheme, the arithmetic inten-
sity of the Gaussian blur is increased from 2 to 8, resulting
in an efficient program that can keep the fragment processors
of the GPU busy between memory accesses. Perhaps more
importantly, the amount of data that must be read back from
the GPU is reduced by the same factor.

Packing by 2 x 2 squares, rather than some other geom-
etry, is efficient because it reflects the memory access pattern
of SIFT. Data that will be processed together are returned by
the same texture fetch, optimizing memory operations. If the
image were packed without reordering, as in Kayombya’s im-
plementation, the arithmetic intensity would depend on the di-
mension that we traverse, resulting in a large performance hit
in vertical filtering [12]. Our tests show that the overhead of
reordering the input image, and then reversing the reordering
on the CPU, is negligible. Thus, the pixel reordering scheme
reduces memory transfer time and accelerates computation at
almost no cost.

Input image Reordered Texture
P1[P2) P1[P2[P3[P4
P3|P4

[—06 pixels—m| l—06 pixels—m

Fig. 3. Pixel reordering to compress data.

4.3. Branchless convolution through on-the-fly code gen-
eration

We generate GPU shader programs at runtime to reflect the
parameters of the algorithm, accelerating computation by un-
rolling filtering loops. The width of the Gaussian smoothing
kernel changes for each successive pyramid level, and is often
based on user-defined parameters, so a single set of filtering
programs would have to evaluate loop conditions to determine
which pixels to process. Because the mobile GPU lacks dy-
namic branching, this would incur serious performance penal-
ties. Instead, we generate and compile filter programs with all
loops unrolled, eliminating branching from the program. We
do not even need to branch to check image boundaries, as
this is done for us by OpenGL ES. The same binary programs
can be used for all of the images in a video stream, assum-
ing that the parameters of the algorithm do not change, so the
overhead of switching programs is not a performance issue.
These techniques allow fine-tuning by the user without loss
of performance.

4.4. Other optimizations

The original algorithm calls for doubling of the initial image
in both width and height, to detect more features, but this is
not conducive to realtime processing. We omit this step, re-
ducing the amount of data that must be processed by a factor
of two. This is a common step to take in high-framerate im-
plementations of SIFT [7]. In our tests, the number of features
is reduced by sixty-four percent, but we should note that the
ones missing are low-scale features, which are less stable to
matching [5]. If a high feature count is required, upsampling
can be reintroduced at the expense of frame rate. Overall, this
is a necessary tradeoff to bring SIFT close to realtime speeds.
Finally, we utilize the separability of Gaussian smooth-
ing with separate shader programs for horizontal and verti-
cal passes, reducing the total number of texture fetches from
Nw? to 2Nw, where N is the number of pixels in the im-
age, and w is the width of the one-dimensional filter kernel.
Separable filtering allows for a linear memory access pattern,
which is especially efficient on the GPU [6]. In addition to
these optimizations, our main contributions of efficient work-
flow partitioning, pixel reordering, and on-the-fly code gener-
ation are essential to providing the frame rates we desire.

5. EXPERIMENTAL RESULTS

We tested the performance of our implementation against
an optimized CPU version running in a single thread. For
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Fig. 4. Interest points detected in 320 x 240 images. Box size
proportional to scale, orientation not shown.
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Fig. 5. Execution time observed on different devices.

the most informative comparison, we benchmarked on four
different devices, representing a wide range of current mobile
hardware. The test platforms are: Qualcomm Snapdragon
S4 APQ8064 Mobile Development Platform, with Android
4.1.2; Google Nexus 7, with NVIDIA Tegra 3, Android 4.2;
Samsung Galaxy Note II, with Samsung Exynos Quad, An-
droid 4.1.1; and NVIDIA Tegra 250 Development Board,
with NVIDIA Tegra 2, Android 2.2. Benchmarks were per-
formed on a popular dataset of 320 x 280 pixel images,
yielding an average of 88 keypoints over three octaves per
image [17]. The small image size is appropriate for our goal
of realtime processing. As expected, the number of features
varies widely with the image size and the parameters of the
algorithm. Some results are shown graphically in Fig. 4.

All devices we tested show considerable acceleration with
heterogeneous computation, as seen in Fig. 5. The speedup
ranges from 4.7x on the Galaxy Note II to 7.0x on the Nexus
7. Table 2 shows that the readback time varies drastically
across different devices, mostly accounting for the slower ex-
ecution time in the Note II's Mali-400 GPU. ARM admits
this drawback of their design [18]. The Snapdragon S4 pro-
cessed 9.9 images per second, elevating the SIFT detector to
the realm of near-realtime mobile applications.

Next, we compare our heterogeneous implementation
with the mobile GPU implementation of SIFT in Kayombya
[12]. We reintroduce upsampling to the algorithm, and reduce
the image size to 224 x 224 pixels for an accurate comparison.
The author reports execution time only up to keypoint refine-
ment, so we benchmark our implementation performing the
same tasks. This comparison is not in our favor, as a complete
implementation of the author’s dataflow scheme would read
orientation data back to the CPU, which we have shown to be
a costly operation. Furthermore, the author’s implementation
uses an approximate method of GPU extrema detection to
reduce complexity. We compare our results from the Tegra

Table 2. Profile of heterogeneous implementations, in ms.

] Task \ S4 \ Nexus 7 \ Note 11 \ Tegra 250 ‘
GSS Pyramid | 43.5 28.2 38.7 52.8
Readback 8.4 23.5 43.1 5.0
Orientation 43.6 58.0 49.5 67.4
Misc. SIFT 5.8 8.3 0.8 1.3

Table 3. Power and energy consumption on NVIDIA Tegra
250 development board.

Test items Results
CPU-only [ Heterogeneous
Power (mW) 3186 3383
Energy per image (mJ) 3161 430

250 development board to Kayombya’s, from a Qualcomm
FFA device with a Snapdragon S2 system-on-chip, so that the
testing platforms are nearly contemporary. We show signif-
icant improvement upon the other design, averaging 148 ms
per image, to Kayomba’s 952 ms, for a 6.4x speedup.
Finally, we test the power and energy consumption of
our implementation on the NVIDIA Tegra 250 development
board. Measurements were taken as an average of 50 seconds
of continuous iteration over the dataset. The development
board takes a 15-volt input, resulting in higher power con-
sumption than on a phone or tablet. Although Table 3 shows
that the two implementations consume comparable power, the
heterogeneous implementation reduces energy consumption
by 87 percent per image compared to the CPU version, by
occupying the processor for a shorter period of time.

6. CONCLUSIONS

We introduced an efficient implementation of the SIFT feature
detector algorithm utilizing mobile GPU acceleration. Profil-
ing of the major stages of the algorithm on both the GPU and
CPU led us to develop a fast dataflow scheme for heteroge-
neous computation. Several key optimizations, such as re-
ordering and compression of the input image, minimized the
communication overhead and accelerated GPU computation.
Considerable speedup was achieved over an optimized CPU
version and related GPU work, resulting in near-realtime pro-
cessing. Additionally, energy consumption was greatly re-
duced on an image-by-image basis. These techniques can
be used to improve framerates and save energy in emerg-
ing mobile applications, such as object recognition, panorama
construction, and augmented reality. In the future, we plan
to explore what additional speedup CPU multi-threading and
OpenCL might have to offer [19, 20].
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