978-1-4799-0356-6/13/$31.00 ©2013 IEEE

PROGRAMMABLE LOW POWER IMPLEMENTATION OF THE HEVC ADAPTIVE LOOP
FILTER

llkka Hautala, Jani Boutellier and Jari Hannuksela

Center for Machine Vision Research
Department of Computer Science and Engineering
FI-90014 University of Oulu

ABSTRACT

The Adaptive Loop Filter (ALF) is a subjective and objective
image quality improving filter in the High Efficiency Video
Coding standard (HEVC). The ALF has shown to be compu-
tationally complex and its complexity has been reduced dur-
ing the HEVC development process. In the HEVC Test Model
HM-7.0 ALF is a 9x7 cross + 3x3 square shaped filter.

This paper presents a programmable application specific
instruction processor for the ALF. The proposed processor
processes 1920x 1080p luminance frames at 30 frames per
second, when operated at a clock frequency of 311 MHz. Low
power consumption and a low gate count make the proposed
processor suitable for embedded devices. The processor pro-
gram code is written in pure C-language, which allows ver-
satile use of the circuit and updates to the filter functionality
without modifying the processor design. To the authors’ best
knowledge this is the first programmable solution for ALF on
embedded devices.

Index Terms— Coprocessors, Adaptive filters, Video sig-
nal processing

1. INTRODUCTION

The High Efficiency Video Coding standard (HEVC, H.265)
is the latest video project of the ITU-T VCEG and ISO/IEC
MPEG standardization organizations [1]. The first edition of
the standard was released in January 2013. HEVC is the suc-
cessor of H.264/MPEG-4 AVC and therefore HEVC has been
designed to support the same applications as H.264/MPEG-4
AVC. However, the coding efficiency of HEVC can be even
50% better than that of its predecessor [2]. Better coding ef-
ficiency reduces network bandwidth requirements and allows
the use of higher resolutions. HEVC also offers better tools
for parallel processing [3].

In HEVC Working Draft (WD) 7, the Adaptive Loop Fil-
ter (ALF) is a filter which improves subjective and objective
video quality. Although ALF improves coding gain signifi-
cantly, especially at high resolutions [4], it has been left out of
the HEVC WD 10 Final Draft International Standard (FDIS).

2664

In HEVC WD 7 ALF is the last stage of in-loop filtering fol-
lowed by the de-blocking filter (DF) and Sample Adaptive
Offset filter (SAO). ALF is very computation-intensive; ac-
cording to [5] ALF alone consumes 28% of the HEVC de-
coder computation time on a single-core processor. Thus,
speeding up the ALF computation has a great effect on the
total HEVC performance.

During the last years the popularity of application-specific
integrated circuit (ASIC) designs has decreased significantly.
ASICs offer high performance and low power consumption,
and have thus been suitable for embedded video processing
devices. However, the increasing complexity of applications
makes ASIC design expensive, complex, resource-intensive
and a time-consuming job. In rapidly developing fields, a
freshly released product can already be outdated due to the
long design and fabrication process.

On the other hand, embedded processors offer the bene-
fits of fast software based design and allow placing a wide
range of applications in the same circuit. The performance
of embedded processors has increased and they have started
to look to be an increasingly attractive alternative to ASICs.
The disadvantage of embedded processors is that they can not
compete with ASICs in power efficiency and performance.

In this paper, we propose a programmable application spe-
cific instruction processor (ASIP) for HEVC ALF. The pro-
posed ASIP is able to process 30 luminance frames a second
for 1920x 1080p resolution at the reasonable clock frequency
of 311 MHz. The processor program code is written using
pure C-language, which allows versatile use of the circuit and
enables software updates. Based on the literature, the pro-
posed design is the first embedded, programmable solution
for HEVC ALF.

This paper is organized as follows: Section 2 explains the
theory of Adaptive Loop Filtering, reviews related work and
describes the processor architecture used. After that the pro-
posed processor architecture is presented in Section 3. Sec-
tion 4 presents the results of experiments. Finally, we discuss
our achievements in Sections 5 and 6.

ICASSP 2013

a) b) [co]
&
ol[1]a]s alala
15]21316 |cs]cs|cr|caco] ca| e co] 5]
14[11[10[7 A
13[12[9 8 o
<o

Fig. 1. a) A predefined RA pixel classification table and b) the
9x7 cross, 3x3 square filter shape in the HEVC test model
version HM-7.0.

2. BACKGROUND

2.1. HEVC video structure

In HEVC, a Coding Tree Unit (CTU) corresponds to the mac-
roblock structure of H.264. The CTU contains a luma cod-
ing tree block (CTB), two or more chroma CTBs and syntax
elements. For luma, the size of CTBs is 16x16, 32x32 or
64 x64 and can be selected by the encoder. Better compres-
sion is usually achieved by using larger CTB sizes. Using
quadtree syntax, a CTU can be divided into smaller blocks
called Coding Units (CU). A CU may have the same size as
a CTB if there is only one CU in the CTU. Each CU is split
into prediction units (PU) of size 64 x64 down to 4 x4.

To offer better support for parallel processing architec-
tures HEVC defines tiles and wavefront parallel processing
(WPP) in addition to traditional slices. When slices con-
sist of a variable number of sequential CTUs in the raster
scan order, tiles are rectangular regions of the picture formed
by CTUs. The tile is an independently-decodable and self-
contained unit. In WPP, a frame is divided into slices which
contain a CTU row. Thus CTU rows can be processed in par-
allel.

2.2. Adaptive loop filtering

In Test Model HM-7.0 of the HEVC standard, the Adaptive
Loop Filter encoding algorithm includes three main stages
[6]. The first stage is filter coefficient derivation. To solve the
filter coefficients, the encoder classifies reconstructed pixels
into different classes and uses Wiener-Hopf equations with
minimized MSE between the original frame and the coded
frame [7]. As a result of filter coefficient derivation, spe-
cific Wiener coefficients are generated for pixels in different
classes.

The encoder can use two methods for pixel classification,
block-based (BA) and region-based (RA) methods. In BA,
local direction and textural characteristics are calculated on
4x4 blocks. In RA, pixel classification is based on the loca-
tion of the pixel in the picture. Figure 1a) shows how a picture
is divided in the RA mode. At its maximum, 16 different fil-
ter sets can be assigned to the luminance component of the

2665

0 1 2 3
R pl8 p\ pl7 p\plﬁ p\ pl5 R
/

4 5
pla p\p13

p6 __ p7 p8
glz égll \plO
@

Px
filtered
57 pixel scale & clip

Fig. 2. The pixel filtering flow.

I VB

| CTB
BOUNDARY

Fig. 3. Virtual boundary processing.

picture and only one to the chrominance components. The
RA mode is only supported in HM-7.0 due to its simplicity
compared to the BA mode.

In the second stage, the encoder makes a decision on
whether filtering is performed for the current frame or not.
If filtering is done for the frame, a third stage is performed,
where the encoder decides an on/off filter flag for every cod-
ing tree block (CTB) in the frame.

There is only the 9x7 cross + 3x3 square filter shape in
HM-7.0; it is presented in Figure 1b). To filter one pixel, 19
pixel values and 10 coefficients are needed. Pixel filtering is
performed as in Figure 2. The Scale & Clip function scales
pixel values to the range [0,255] and is equivalent to the fol-
lowing equation:

0 if (pr +27) %278 <0
255 if (po +27) 27% > 255
(pe +27) 278 when others

sc(pe) =

ey
ALF filtering can be performed CTB by CTB in a raster
scan order. To reduce memory requirements, virtual boundary
(VB) processing is introduced in [8]. The VB is a horizon-
tal boundary located above each CTB’s bottom boundary. In
VB processing, the filter shape is vertically reduced to avoid
crossing the virtual boundary. Figure 3 shows how filtering is
done for pixels above and below the VB.

FU FU
LSU ADD MUL RF

instruction|
fecth
unit 2

Fig. 4. An example TTA processor.

2.3. Related work

Du et al. [9] propose combined deblocking and ALF hard-
ware architecture for H.264/AVC. The architecture uses 9x9
tap ALF and can process a macroblock in 843 clock cycles.
The maximum clock frequency of the architecture is 211
MHz.

Radiess et al. [10] have designed a hardware implementa-
tion for ALF filtering based on the Test Model HM-4.0 of the
HEVC standard. Since HM-4.0 includes three different filter
shapes (diamond 5x 5, 7x7 and 9x9), three hardware archi-
tectures are proposed. Their implementation (diamond 7x7)
is able to process 102 1080p frames at an operating frequency
of 212 MHz. The authors have not indicated gate counts or
power consumption.

Alvarez-Mesa et al. [5] decode multiple LCU rows in par-
allel. Their proposal achieved a resolution of 1920x 1080p at
50 fps using 12 Intel Xeon cores operating at 3.3 GHz. With
12 threads, the ALF part of the total decoding time was 18%.

The works of Du et al. and Radiess et al. present higher
processing rates than the proposed solution, which is natu-
ral since their proposals are a fixed hardware design. Fur-
thermore, the proposal of Radiess et al. does not support
frame/tile boundary padding or virtual boundary processing
at all, unlike our proposal. The work of Du et al. is directed
at H.264/AVC. The solution of Alvarez-Mesa, on the other
hand, is not suitable for embedded devices.

2.4. Transport triggered architecture

Transport triggered architecture processors (TTAs) resem-
ble Very Long Instruction Word (VLIW) architectures [11].
TTAs exploit instruction level parallelism similarly to VLIW
processors; multiple instructions are executed in parallel ev-
ery clock cycle. TTAs have only one, move, instruction which
is used to transport data between function units (FU) and reg-
ister files (RF). Computational operations are triggered by
data transports to the trigger ports of FUs. The results of
operations can be moved from FU outputs directly to inputs
of other FU input ports, which reduces the use of register
files. The visibility of all data transports allows the compiler
to control and optimize data moves.

Figure 4 presents an example TTA processor. The proces-
sor consists of three transport buses (black horizontal lines),
FUs (load store unit, adder, multiplier) and an RF. FUs and the

2666

¢ status/control signals ¢

Data data
Producer Unit | o ALF

Shared ALF
>
memory TTA-PROCESSOR

Data Shared
Consumer Unit memory

Filtered pixels

Fig. 5. ALF TTA-processor interface.

RF are connected to transport buses over sockets (rectangular
vertical bars with black dots). The arrows above the sockets
tell us whether the socket is an input or an output socket. Be-
cause of the three transports buses, three data transports can
be done every clock cycle.

The TTA development environment is called the TTA-
based Co-design Environment (TCE) [12]. The TCE com-
piler generates machine code for the target processor from
high level language source codes. The TCE simulator can
analyze cycle by cycle how a program runs on a target TTA
processor. A synthesizable RTL description of the given pro-
cessor design can be created using a Processor Generator.

3. PROPOSED SOLUTION

The interfaces of the proposed ALF processor are presented
in Figure 5. A unit which produces data to the ALF is as-
sumed to store the following information in the shared mem-
ory: pixels to be filtered, ALF filter coefficients, and informa-
tion about which filter set is in use at any given time (defined
for each 4x4 block). When all necessary data is stored in the
shared memory, a request to perform filtering is transmitted to
the ALF processor using a control signal. The ALF processor
reports its progress via status signals.

The ALF processor’s software is designed to perform fil-
tering only across slice boundaries, thus the HEVC slice_-
loop _filter_across _slices_enabled flag must be equal to 1. The
whole frame or tile is processed CTB row by CTB row, and
the software assumes that the shared memory contains pixels
of the four last lines from the previous CTB row and pixels
from the current CTB row excluding the four last lines.

The CTB row filtering is performed using a raster scan or-
der in a 4x4 block at a time using a predefined filterset. At
a boundary of a tile or a frame, the filter’s shape is changed
so that pre-boundary padding is not necessary. A 32-bit word
in the memory includes four 8-bit pixel values. At the be-
ginning of the row, 16 32-bit memory accesses are needed
to get the necessary data for filtering a 4x4 block. Already
read pixels are maintained in register files as long as they are
needed. Thus, for the next 4 x4 block only ten 32-bit memory
read operations are required. The proposed TTA processor
has several registers since the values of 64 pixels are main-
tained to reduce memory operations. Reducing memory read
operations is desirable due their power and time consuming
nature (a memory read takes 3 clock cycles).

Table 1. Function units of the ALF Processor.

FU name inputs outputs dataw

1x Isu_datamem 2 1 32
1x Isu_sharedmem 2 1 32
6% add 2 1 21

7 % mul 2 1 21
1x add_shl_shr_shru_sub 2 1 32
1x eq-gtgtu 2 1 32
1x and_ior_xor 2 1 32
2x 4INPUTADD 4 1 21
1x SEPARATE 1 4 32/8
1x JOIN 4 1 8/32
1x SCALE_CLIP 1 1 21
1x ALF_STATUS 1 1 8

1x bool 1 1 1
5% rf_16x21 2 2 21
1x rf_.16x32 2 2 32
Ix gcu 1 1 32

Fifteen buses has been observed to be the minimum bus
requirement for five clock cycles per pixel with the current
software. The average utilization rate of buses is over 90%.
Increasing the number of transports buses could significantly
reduce the cycle count; however, the circuit gate count would
grow and the maximum clock frequency would be reduced.

Figure 2 shows that nine add (stage 1) and ten multiply
(stage 2) units can be exploited at a time. In practice, six adder
FUs and seven multiplier FUs are considered to be sufficient.
The latency of the multiplier units is 2 clock cycles and the la-
tency of the adders is one clock cycle. Two four-input adders
are presented to merge stages 3-4 and stages 5-6. A four-input
add is done in one clock cycle, as is scale and clip which is
also implemented with a special function unit.

To handle 32-bit pixel packets, two special function units
are used: separate and join. Decomposing of 32-bit pixel
packets to four 8-bit pixels separate is used. Join works in-
versely and constructs 32-bit pixel packets from four 8-bit
pixels. Both operations are performed in a one clock cycle.
All FUs in the architecture are listed in Table 1.

4. EXPERIMENTS

The ALF processor was verified using the Altera Stratix III
(EP3SE260F1152C2) FPGA. A luminance frame was de-
coded to ensure that the design works correctly. For the
verification, a simple data producer unit is implemented. The
data producer is connected to the ALF processor as in Fig-
ure 5. The shared memory used was a dual port memory (2
address ports, one data write port and one data read port),
instantiated from the Altera IP core libraries. The FPGA
synthesis results are listed in Table 2.

The ALF processor was synthesized with the UMC 90

2667

Table 2. FPGA synthesis results for the ALF-processor.

Resource unit
Logical Elements 12983
Total Registers 5723
DSP 21-bit elements 16
Embedded Multiplier 21-bit 7

nm standard cell library (fsdOk_generic_core_1d0vtc). Syn-
opsys Design Compiler was used to estimate the gate count
and the maximum clock frequency. Power consumption mea-
surement was done using Synopsys PrimeTime with internal
signal transitions recorded by Mentor Graphics ModelSim.

The ALF processor’s area estimate was 142491 NAND
g.e. and power consumption of the ALF processor was
43 mW. The processor ran at a maximum clock frequency
of 290 MHz, which produces 27 1920x1080p luminance
frames per second. That is very close to reaching the HDTV
1920x1080p at 30 fps which requires a clock frequency of
311 MHz. Synthesis using the 65 nm standard cell library
would easily enable 311 MHz clock frequency or higher [13].
For supporting chroma channels and UHD resolutions (2160p
and 4320p), multiple parallel instances of the proposed pro-
cessor can be placed in one design.

5. DISCUSSION

At the moment, ALF has been left out of the HEVC standard,
due to the fact that it is computationally very expensive. Thus,
the latest reference software version which includes ALF is
WD 7. However, it has been proposed that ALF should be in-
cluded in the upcoming HEVC profiles or in the main profile
with some clean-ups and complexity reductions [14]. This
work shows that efficient, software based ALF implementa-
tions even for embedded devices are possible. Thus, includ-
ing ALF in the high-performance HEVC profiles is a realistic
option for future HEVC development.

6. CONCLUSION

This paper presents an application-specific instruction proces-
sor for Adaptive Loop Filtering. The ALF is a subjective and
objective image quality improving filter in the HEVC stan-
dard. The proposed processor is fully programmable through
C language. The design was verified on FPGA and synthe-
sized using the UMC 90 nm standard cell library. The proces-
sor synthesis reports a gate count of 142491 g.e. and a power
consumption of 43 mW. For filtering one pixel, 5 clock cy-
cles are consumed by the designed processor, and it is able to
filter 30 1920x1080p luminance frames per second at a clock
frequency of 311 MHz. To the authors’ best knowledge this
is the first programmable solution for ALF on embedded de-
vices.

7. REFERENCES

[1] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wie-
gand, “Overview of the High Efficiency Video Coding
(HEVC) Standard,” IEEE Trans. Circuits and Systems
for Video Tech, 2012.

[2] J. Ohm, G.J. Sullivan, H. Schwarz, T. K. Tan, and
T. Wiegand, “Comparison of the Coding Efficiency
of Video Coding Standards - Including High Efficiency
Video Coding (HEVC),” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 22, no. 12, pp.
1669-1684.

[3] C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare,
F. Henry, S. Pateux, and T. Schierl, ‘“Parallel Scalability
and Efficiency of HEVC Parallelization Approaches,”
IEEFE Transactions on Circuits and Systems for Video
Technology, 2012.

[4] T. Ikai, Y. Yasugi, T. Yamamoto, T. Tsukaba, and
T. Aono, “Inclusion of ALF in Main profile and ad-
ditional test results,” Tech. Rep., 2012, Document of
Joint Collaborative Team on Video Coding (JCT-VC),
JCTVC-J0330r3.

[5] M. Alvarez-Mesa, C. C. Chi, B. Juurlink, V. George,
and T. Schierl, “Parallel video decoding in the emerg-
ing HEVC standard,” in 2012 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), 2012, pp. 1545-1548.

[6] C.-Y. Chen and C.-Y. Tsai, “AHG6: ALF with non-
normative encoder-only improvements,” Document of
Joint Collaborative Team on Video Coding, July 2012,
JCTVC-J0048.

[7] C.-Y. Tsai, C.-Y. Chen, C.-M. Fu, Y.-W. Huang, and
S. Lei, “One-pass encoding algorithm for Adaptive
Loop Filter in High Efficiency Video Coding,” in 2011
IEEFE Visual Communications and Image Processing
(VCIP), 2011, pp. 1-4.

[8] C.-M. Chen, C.-Y. Fu, “Non-CES8.c.7: Single-source
SAO and ALF virtual boundary processing with cross
9x%9,” Input Document to JCT-VC, November 2011,
JCTVC-G212.

[9] J. Du and L. Yu, “A parallel and area-efficient archi-
tecture for deblocking filter and Adaptive Loop Filter,”

in 2011 IEEF International Symposium on Circuits and
Systems (ISCAS), 2011, pp. 945-948.

[10] F. Rediess, L. Agostini, C. Cristani, P. Dall’Oglio, and
M. Porto, “High throughput hardware design for the
Adaptive Loop Filter of the emerging HEVC video cod-
ing,” in 2012 25th Symposium on Integrated Circuits
and Systems Design (SBCCI), 2012, pp. 1-5.

2668

(11]

(12]

(13]

(14]

H. Corporaal, Microprocessor Architectures: From
VLIW to TTA, John Wiley & Sons, Inc., New York, NY,
USA, 1997.

O. Esko, P. Jadskeldinen, P. Huerta, C. S. de La Lama,
J. Takala, and J. I. Martinez, “Customized exposed dat-
apath soft-core design flow with compiler support,” in
20th International Conference on Field Programmable
Logic and Applications, Milano, Italy, 2010, pp. 217-
222.

M. Muller, “Embedded Processing at the Heart of Life
and Style,” in IEEFE International Solid-State Circuits
Conference, San Francisco, CA, USA, 2008, pp. 32-37.

D.-K. Kwon and M. Budagavi, “Crosscheck of JCTVC-
J0390: AHGO6: Further cleanups and simplifications of
the ALF in JCTVC-J0048,” Input Document to JCT-VC,
July 2012, JCTVC-J0440.

