
FAST PCA-BASED FACE RECOGNITION ON GPUS

Youngsang Woo, Cheongyong Yi, Youngmin Yi

{ys.woo, opwen10, ymyi}@uos.ac.kr

School of Electrical and Computer Engineering, University of Seoul, Korea

ABSTRACT

Face recognition is very important in many applications

including surveillance, biometrics, and other domains. Fast

face recognition is required if she wants to train or test more

images or to increase the resolution of an input image for

better accuracy in the recognition. Meanwhile, Graphics

Processing Units (GPUs) have become widely available,

offering the opportunity for real-time face recognition even

for larger set of images with a high resolution. In this paper,

we explore the design space of parallelizing a PCA

(Principal Component Analysis) based face recognition

algorithm and propose a fast face recognizer on GPUs by

exploiting the fine-grained data-parallelism found in the face

recognition algorithm. We successfully accelerated the

major three tasks by 120-folds, 70-folds, and 110-folds,

compared to a sequential C implementation. For the end-to-

end comparison, our CUDA face recognizer achieved a 30-

fold speedup.

Index Terms— Face recognition, PCA, CUDA, GPU

1. INTRODUCTION

The face is one of the most important objects that people

deal with in a daily life. Making a computer to recognize

faces and learn new faces has been a very interesting topic

and attracted many researchers. One of the most successful

approaches that have been used for face recognition is based

on Principal Component Analysis (PCA) [1]. This technique,

usually referred to as eigenface approach, has been proposed

by Turk and Pentland [2]. It enables efficient face

recognition through capturing only a set of characteristics of

training face images, and through comparing only this

information with that of a given test image.

However, training face images is still time-consuming

for reasonable amount of images with typical pixel size. For

example, it takes almost 5 minutes to train only 600 images

with 90K pixels, on a latest computer machine (e.g., Intel

Core i7 with 3.4GHz with 4GB of memory). Testing face

image is less complex and can be done in a shorter time

compared to training. However, testing time increases as the

number of images to compare in the DB increases.

Therefore, accelerating the training as well as the testing of

face recognition is the primary concern of this paper.

On the other hand, NVIDIA has recently introduced

CUDA (Compute Unified Device Architecture) [5] parallel

programming framework so that Graphics Processing Units

(GPUs) [6] can be used as a general purpose computing

platform. GPU aims at increasing throughput rather than

decreasing latency of individual computation. With that

purpose, it has massive number of processing elements that

can execute hundreds of threads in parallel. It gained much

popularity as it successfully accelerated a wide range of

applications in different domains.

Face recognition has tremendous data parallelism. In

general, accuracy of recognition will increase as the number

of images increases and the number of pixels in a facial

image increases. Also, the larger the number of principal

components, which is the dimension of the eigenvectors, the

higher the accuracy of the recognition will be. All these

contribute to huge data-parallelism in face recognition. In

this paper, we present a fast face recognizer on GPUs that

efficiently maps the fine-grained data-parallelism found in

the face recognition algorithm onto the massive number of

processors in GPUs. We explore the different parallelization

strategies for the PCA based face recognition on GPUs. We

successfully accelerated the major three tasks by 120-folds,

70-folds, and 110-folds, compared to a sequential C

implementation. For the end-to-end comparison, our CUDA

face recognizer achieved a 30-fold speedup.

2. PCA BASED FACE RECOGNITION

Eigenface approach is based on PCA. PCA is a technique

used to find out the significant information or principal

components in the data set. With the principal components,

one can reduce the dimensionality of the vector space where

the data are originally represented. Then, we can identify or

represent the data with only this set of significant

information (i.e, principal components). Such significant

features, in the context of face recognition, are called

eigenfaces as it is obtained from eigenvectors.

Figure 1 shows the computation flow of Eigenface

approach for training face images. The blue boxes depict the

main tasks and white boxes their inputs and outputs. The

2659978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

first task computes the covariance of training images to

reflect the redundancy. It computes N by N covariance

matrix C, where N is the number of training face images in

the face DB. If we denote the kth training image as k , the

average face as , the pixel size as P, then, the element in

ith row and jth column in a C, Cij , is described as follows.

T
iiij

P
C)()(

1

The second task finds out the principal components

from the covariance matrix C. Since principal components

with larger variances represent the interesting structure while

those with lower variances represent noise, C is diagonalized

such that the variances are maximized and the redundancies

are minimized. This corresponds to computing the

eigenvectors of C, and these eigenvectors are the principal

components of the training images [1]. We use Jacobi

method for this computation.

The third task computes eigenfaces um as below using

the eigenvectors vm obtained in the second task.

N

n
nnmm vu

1
,)(

As can be seen in the equation, each eigenface is

computed as a linear combination of the training images.

Finally, the fourth task projects each training image to the

subspace defined by eigenvectors, and obtains weights for

each eigenface. It performs dot product of eigenvectors and

the normalized image as shown in the following equation.

)(, n
T
mmn uw

An image is reconstructed using this weight of each

eigenface. When we test a face image, it is compared only

with these weights, not with pixel by pixel. Testing face

images consists of this task and a task that calculates the

distance in the subspace.

Figure 1. The computation flow of training face images

in the PCA based face recognition. (The three tasks

denoted with numbers are the tasks that we parallelized

in this paper)

3. GPU AND CUDA

Graphics Processing Units (GPUs) were designed originally

for processing graphics applications, where millions of

operations can be executed in parallel. In order to increase

the efficiency by exploiting this parallelism, typical GPUs

have hundreds of processing cores in a hierarchical

organization. For example, the NVIDIA GTX580 GPU has

512 processing cores called streaming processors (SP). The

processing cores are organized hierarchically: A group of

SPs makes up a streaming multiprocessor (SM). A number

of SMs form a single graphics device. The GTX480, for

example, contains 16 SMs, with 32 SPs in each SM,

resulting in the total of 512 SPs.

Recently, NVIDIA introduced the Compute Unified

Device Architecture (CUDA). It allows programmers to

utilize GPUs to accelerate applications in domains other

than graphics. CUDA is essentially the C programming

language with extensions for thread execution and GPU-

specific memory access and control. A CUDA thread is

executed on an SP and a group of threads (called a thread

block) is executed on an SM. CUDA enables the

acceleration of a wide range of applications in various

domains by executing a number of threads and thread blocks

in parallel. This data-parallel function executed on GPUs is

called a kernel. In order to utilize the massive parallelism in

the GPU better, it is typical to have hundreds of threads in a

thread block, and have hundreds or thousands of thread

blocks launched for a single kernel.

Threads can synchronize with one another by using

atomic operations APIs in CUDA, or by using shared

memory and synchronization APIs such as __syncthreads()

[7].

4. PARALLELIZING EIGENFACE

In this section, we explain how the concurrency explained in

section 2 can be mapped to threads and thread blocks in

CUDA. Recall that we denote the number of pixel size in an

image as P, the number of input image as N, the number of

eigenvectors as M. M can be at most N-1.

Table 1. The execution time of the C implementation [4]

(FERET DB [8], P= 300x300, N= 560, M=559)

 Time(ms) Portion(%)

Covar. matrix computation 55,728 20

Eigenface computation 108,383 38

Projecting to subspace 112,223 40

Jacobi method 6,086 2

Total 282,420 100

Table 1 shows the training execution time profiling of our

reference implementation in C when P is 300x300 and N is

560. Since all the three tasks except eigenvalue computation

using Jacobi method take substantial amount of portions, we

decided to implement these three tasks in CUDA.

Note that, in testing, Projecting to subspace dominates

the overall execution time and the task which calculates the

distance in the subspace takes negligible time.

2660

Now, we will describe the design choices of each task

when it is implemented in CUDA.

4.1. Covariance Matrix Computation Task

Since this task computes covariance between all images, the

complexity is in O(N
2
P). If we map each image to a thread,

more images are executed in parallel but the covariance

computation of an image itself is done sequentially. Thus,

we map each image to a thread block, and the pixels in the

image to the threads in the block. This enables parallel

execution of the covariance of an image. In this mapping,

there would be N
2
 thread blocks (NxN two dimensional

blocks). Note that the maximum number of threads in a

thread block is either 512 or 1024 depending on the type of

GPUs. If the pixel size is larger than this limit, each thread

has to carry on the computations for multiple pixels

sequentially.

To obtain the covariance of the image that the thread

block is mapped to, the threads in the block must perform

sum reduction. After each thread completes the computation

for one or more pixels that it is assigned, they must

synchronize for the reduction. Such synchronization can be

done through atomic operation or using by parallel reduction

on the shared memory

4.2. Eigenface Computation Task

The complexity of this task is in O(NMP). We can execute

both M eigenvectors and N training images in parallel with P

pixels. In this mapping, there would be NxM thread blocks

and each block is assigned P pixels. Alternatively, if we

parallelize only N images, along with P pixels, the kernel

will have N thread blocks and it will be invoked M times

sequentially from the CPU, as shown in Figure 2(a).

However, these mappings are inefficient since the sum

reduction is required for each of the pixel in the same

location in N images. Since this reduction requires

synchronization among threads across different thread

blocks, we must use atomic operations on global memory,

which is very costly. Alternatively, we can store the

intermediate values in global memory first, and perform

synchronization in a separate kernel. Still, this incurs

significant overhead.

Thus, we parallelize M eigenvectors, along with P

pixels, and invoke the kernel N times sequentially from the

CPU, as shown in Figure 2(b). If we parallelize over M

eigenvectors, the same image, imagen, is mapped to a thread

block, each with the mth eigenvector. To obtain the mth

eigenface, sum reduction is required. In this mapping, we

only need to accumulate the result from the current

invocation to the partial results already obtained from the

previous invocations of the kernel. Another advantage of

this mapping is that all thread blocks read the same image,

which would results in better locality for the cache.

4.3. Projecting to Subspace Task

The complexity of this task is also in O(NMP). This can

be parallelized both in N and M, along with P. Unlike

Eigenface computation task, this mapping needs to perform

sum reduction only for the same image, not for different

images. It generates the single reduced value, wnm, for each

of NM thread blocks.

(a) (b)

imagen,

eigen0

imagen,

eigen1

imagen,

eigenM-1

TB(0) TB(1) TB(M-1)

..

GPU kernel

foreach n in N images

CPU

image0,

eigenm

image1,

eigenm

imageN-1,

eigenm

TB(0) TB(1) TB(N-1)

..

Sum Reduction per pixel+

GPU kernel

foreach m in M eigenvectors

CPU

Figure 2. (a) NP mapping where there are N thread

blocks and (b) MP mapping where there are M thread

blocks

4.4. Increasing Block Level Parallelism

As we produce more thread blocks, it increases the potential

parallelism, providing enough thread blocks that an SM will

execute simultaneously. We can change the number of

thread blocks by changing the number of pixels, T, which is

assigned to a thread: if P is larger than the number of threads

in a block, a thread must compute for multiple pixels

sequentially. If we assign smaller T to a thread, we will have

more than one thread blocks for each image, resulting in a

larger number of thread blocks in the system. This could in

turn increase the throughput and reduce the overall

execution time, if it suffered from insufficient parallelism.

However, as the number of thread blocks increases, it

may worsen the cache locality: too many concurrent thread

blocks could pollute the cache and, when a thread block is

resumed, it would find that its contents had been replaced in

the cache. Moreover, additional reduction must be

performed across multiple thread blocks (for the same

image), which incurs overhead.

When smaller T is set, the gain that could be obtained

with the sufficient parallelism with the increased number of

thread blocks, and the loss that could come from the

increased cache misses and the additional reduction, will be

different for each kernel.

5. EXPREIMENTAL RESULTS

We used the C/OpenCV [3] implementation obtained from

[4] as our reference baseline and executed this single

threaded C implementation on Core i7 3.40 GHz machine.

We implemented the three tasks in CUDA as discussed in

the previous section and executed on a NVIDIA GTX580.

We used images from FERET DB [8], whose pixel size is

300x300.

2661

5.1. Effects of Thread Block Number

As discussed in section 4.4, varying the number of

pixels, T, that are assigned to a thread changes the total

number of thread blocks executed on a GPU. Figure 3 shows

the execution time of three tasks when T varies. As shown in

Figure 3(a), Covariance Matrix Computation (CMC) task

takes shortest time when T is 200. Since CMC task already

has sufficient parallelism of at least N
2
 thread blocks, having

small T results in too many concurrent thread blocks, which

also increases synchronization overhead and worsen the

cache locality. Thus, the execution time decreases as T

increases. When T is larger than 200, it starts to increase as

the parallelism becomes insufficient.

As discussed in section 4, Eigenface Computation (EC)

task has only M thread blocks. Thus, the execution time of

EC decreases as T decreases, as shown in Figure 3(b).

Projecting to Subspace (PS) task has at least NM thread

blocks and shows a similar trend in CMC task. In this case,

the best execution time is obtained when T is 10.

300

500

700

5 10 50 100 150 200 250 300

(a) Covar. Matrix Computation task

260

280

300

320

5 10 50 100 150 200 250 300

(b) Eigenface Computation task

700

900

1100

1300

5 10 50 100 150 200 250 300

(c) Projection to Subspace task

Figure 3. The execution time (msec) of each CUDA task

when the number of pixels per thread (T) changes

5.2. Execution Time Comparison

We selected the best T value for each task in CUDA,

and compared the execution time with the C implementation.

The execution time of the CUDA task includes the memory

transfer time between CPU and GPU memory, and memory

allocation time as well as the kernel execution time. Figure 4

shows the speedup of the three tasks as the number of N

increases. CMC task is accelerated best among the three

tasks and about 120-fold speedup is achieved when N is 560.

EC task achieves about 70-fold speedup, and PS task

achieves about 110-fold speedup. These correspond to 0.5

second from 56 seconds, 1.6 second from 108 seconds, and

1 second from 112 seconds. The end-to-end comparison

including Jacobi method results in over 30-fold speedup.

20

40

60

80

100

120

140

80 240 400 560

Covarance Mat.

Eigenface Calc.

Projection

Figure 4. Speedup of three tasks on GPU when M=N-1

6. RELATED WORK

Although there is plenty of work for face detection on

GPUs, there is not much work for the acceleration of face

recognition on GPUs.

Local Binary Pattern (LBP) based face recognizer on

GPUs using CUDA is presented in [9]. They parallelized

three tasks: the one that computes LBP value for an input

image, the one that computes local histogram from LBP

values, and the one that computes k-Nearest Neighboring. It

reports a 29-fold speedup was achieved.

Acceleration of PCA based face recognition is presented

in [10]. It only parallelized Projecting to subspace task. For

testing of face images, it additionally parallelized the task

that calculates the distance, in the subspace, between the test

image and the one in the DB. It reports a 200-fold speedup

on GTX480. However, the pixel size was very small as

16x16, and the whole image is mapped to a thread. This

approach is hard to achieve efficient acceleration when the

pixel size is larger. By contrast, in our work, we parallelized

all three tasks. Moreover, we investigated the impact of

different mappings.

7. CONCLUSION

 In this paper, we have discussed different possible

mappings of PCA based face recognition onto GPUs. We

have successfully accelerated the overall PCA based face

recognition by 30 folds when the training image was 560.

With larger number of images, we expect further higher

speedup. As we have accelerated the OpenCV APIs for

general PCA, we envision the proposed CUDA

implementations can also be used for other PCA based

applications.

2662

8. REFERENCES

[1] L. I. Smith, “A Tutorial on Principal Components

Analysis”,

http://www.cs.otago.ac.nz/cosc453/student_tutorials/princip

al_components.pdf, 2009

[2] M. Turk, A. Pentland, “Eigenfaces for Recognition”,

Journal of Cognitive Neuroscience, pp.71-86, 1991

[3] OpenCV Library, http://opencv.org

[4] R Hewitt, “Face Recognition with Eigenface”, SERVO

Magazine, April 2007

[5] J. Nickolls et al., “Scalable Parallel Programming with

CUDA," ACM Queue, vol. 6, no. 2, Mar./Apr. 2008, pp. 40-

53

[6] C. M. Wittenbrink, E. Kilgariff, A. Prabhu, “Fermi

GF100 GPU Architecture”, IEEE Micro, vol. 31, no. 2, Mar.

2011, pp. 50-59

[7] “CUDA C Programing Guide version 4.1”, pp. 98-100

[8] P. Phillips, H. Wechsler, J. Huang, P. Rauss, “The

FERET Database and Evaluation Procedure for Face-

recognition Algorithms”, Image Vision Computing, no. 16,

vol. 5, pp. 295-306, 1998 ,

[9] S. C. Tek, M. Gokmen, “CUDA Accelerated Face

Recognition Using Local Binary Patterns”, Technical Report,

Istanbul Technical University, Turkey, 2012

[10] N. Ashraf, Sibi. A “CUDA-Accelerated Face

Recognition”, poster presentation, GPU Technology

Conference, 2010

2663

