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ABSTRACT 

 

Face recognition is very important in many applications 

including surveillance, biometrics, and other domains. Fast 

face recognition is required if she wants to train or test more 

images or to increase the resolution of an input image for 

better accuracy in the recognition. Meanwhile, Graphics 

Processing Units (GPUs) have become widely available, 

offering the opportunity for real-time face recognition even 

for larger set of images with a high resolution. In this paper, 

we explore the design space of parallelizing a PCA 

(Principal Component Analysis) based face recognition 

algorithm and propose a fast face recognizer on GPUs by 

exploiting the fine-grained data-parallelism found in the face 

recognition algorithm. We successfully accelerated the 

major three tasks by 120-folds, 70-folds, and 110-folds, 

compared to a sequential C implementation. For the end-to-

end comparison, our CUDA face recognizer achieved a 30-

fold speedup. 

 

Index Terms— Face recognition, PCA, CUDA, GPU 

 

1. INTRODUCTION 

 

The face is one of the most important objects that people 

deal with in a daily life. Making a computer to recognize 

faces and learn new faces has been a very interesting topic 

and attracted many researchers. One of the most successful 

approaches that have been used for face recognition is based 

on Principal Component Analysis (PCA) [1]. This technique, 

usually referred to as eigenface approach, has been proposed 

by Turk and Pentland [2]. It enables efficient face 

recognition through capturing only a set of characteristics of 

training face images, and through comparing only this 

information with that of a given test image.  

However, training face images is still time-consuming 

for reasonable amount of images with typical pixel size. For 

example, it takes almost 5 minutes to train only 600 images 

with 90K pixels, on a latest computer machine (e.g., Intel 

Core i7 with 3.4GHz with 4GB of memory). Testing face 

image is less complex and can be done in a shorter time 

compared to training. However, testing time increases as the 

number of images to compare in the DB increases. 

Therefore, accelerating the training as well as the testing of 

face recognition is the primary concern of this paper. 

On the other hand, NVIDIA has recently introduced 

CUDA (Compute Unified Device Architecture) [5] parallel 

programming framework so that Graphics Processing Units 

(GPUs) [6] can be used as a general purpose computing 

platform. GPU aims at increasing throughput rather than 

decreasing latency of individual computation. With that 

purpose, it has massive number of processing elements that 

can execute hundreds of threads in parallel. It gained much 

popularity as it successfully accelerated a wide range of 

applications in different domains.  

Face recognition has tremendous data parallelism. In 

general, accuracy of recognition will increase as the number 

of images increases and the number of pixels in a facial 

image increases. Also, the larger the number of principal 

components, which is the dimension of the eigenvectors, the 

higher the accuracy of the recognition will be. All these 

contribute to huge data-parallelism in face recognition.  In 

this paper, we present a fast face recognizer on GPUs that 

efficiently maps the fine-grained data-parallelism found in 

the face recognition algorithm onto the massive number of 

processors in GPUs. We explore the different parallelization 

strategies for the PCA based face recognition on GPUs. We 

successfully accelerated the major three tasks by 120-folds, 

70-folds, and 110-folds, compared to a sequential C 

implementation. For the end-to-end comparison, our CUDA 

face recognizer achieved a 30-fold speedup. 

 

2. PCA BASED FACE RECOGNITION 

 

Eigenface approach is based on PCA. PCA is a technique 

used to find out the significant information or principal 

components in the data set. With the principal components, 

one can reduce the dimensionality of the vector space where 

the data are originally represented. Then, we can identify or 

represent the data with only this set of significant 

information (i.e, principal components). Such significant 

features, in the context of face recognition, are called 

eigenfaces as it is obtained from eigenvectors.  

Figure 1 shows the computation flow of Eigenface 

approach for training face images. The blue boxes depict the 

main tasks and white boxes their inputs and outputs. The 
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first task computes the covariance of training images to 

reflect the redundancy. It computes N by N covariance 

matrix C, where N is the number of training face images in 

the face DB. If we denote the kth training image as k  , the 

average face as , the pixel size as P, then, the element in 

ith row and jth column in a C, Cij , is described as follows.  
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The second task finds out the principal components 

from the covariance matrix C. Since principal components 

with larger variances represent the interesting structure while 

those with lower variances represent noise, C is diagonalized 

such that the variances are maximized and the redundancies 

are minimized. This corresponds to computing the 

eigenvectors of C, and these eigenvectors are the principal 

components of the training images [1]. We use Jacobi 

method for this computation. 

The third task computes eigenfaces um as below using 

the eigenvectors vm obtained in the second task.  
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As can be seen in the equation, each eigenface is 

computed as a linear combination of the training images.  

Finally, the fourth task projects each training image to the 

subspace defined by eigenvectors, and obtains weights for 

each eigenface. It performs dot product of eigenvectors and 

the normalized image as shown in the following equation. 

)(,  n
T
mmn uw

 
An image is reconstructed using this weight of each 

eigenface. When we test a face image, it is compared only 

with these weights, not with pixel by pixel. Testing face 

images consists of this task and a task that calculates the 

distance in the subspace.  

 

Figure 1. The computation flow of training face images 

in the PCA based face recognition. (The three tasks 

denoted with numbers are the tasks that we parallelized 

in this paper) 

 

3. GPU AND CUDA 

 

Graphics Processing Units (GPUs) were designed originally 

for processing graphics applications, where millions of 

operations can be executed in parallel. In order to increase 

the efficiency by exploiting this parallelism, typical GPUs 

have hundreds of processing cores in a hierarchical 

organization. For example, the NVIDIA GTX580 GPU has 

512 processing cores called streaming processors (SP). The 

processing cores are organized hierarchically: A group of 

SPs makes up a streaming multiprocessor (SM). A number 

of SMs form a single graphics device. The GTX480, for 

example, contains 16 SMs, with 32 SPs in each SM, 

resulting in the total of 512 SPs.  

Recently, NVIDIA introduced the Compute Unified 

Device Architecture (CUDA). It allows programmers to 

utilize GPUs to accelerate applications in domains other 

than graphics. CUDA is essentially the C programming 

language with extensions for thread execution and GPU-

specific memory access and control. A CUDA thread is 

executed on an SP and a group of threads (called a thread 

block) is executed on an SM. CUDA enables the 

acceleration of a wide range of applications in various 

domains by executing a number of threads and thread blocks 

in parallel. This data-parallel function executed on GPUs is 

called a kernel. In order to utilize the massive parallelism in 

the GPU better, it is typical to have hundreds of threads in a 

thread block, and have hundreds or thousands of thread 

blocks launched for a single kernel. 

Threads can synchronize with one another by using 

atomic operations APIs in CUDA, or by using shared 

memory and synchronization APIs such as __syncthreads() 

[7]. 
 

4. PARALLELIZING EIGENFACE 

 

In this section, we explain how the concurrency explained in 

section 2 can be mapped to threads and thread blocks in 

CUDA. Recall that we denote the number of  pixel size in an 

image as P, the number of input image as N, the number of 

eigenvectors as M. M can be at most N-1. 

Table 1. The execution time of the C implementation [4] 

(FERET DB [8], P= 300x300, N= 560, M=559) 

 Time(ms) Portion(%) 

Covar. matrix computation 55,728 20 

Eigenface computation 108,383 38 

Projecting to subspace 112,223 40 

Jacobi method 6,086 2 

Total 282,420 100 

 

Table 1 shows the training execution time profiling of our 

reference implementation in C when P is 300x300 and N is 

560. Since all the three tasks except eigenvalue computation 

using Jacobi method take substantial amount of portions, we 

decided to implement these three tasks in CUDA.  

Note that, in testing, Projecting to subspace dominates 

the overall execution time and the task which calculates the 

distance in the subspace takes negligible time.  

2660



Now, we will describe the design choices of each task 

when it is implemented in CUDA.  

 

4.1. Covariance Matrix Computation Task 

Since this task computes covariance between all images, the 

complexity is in O(N
2
P). If we map each image to a thread, 

more images are executed in parallel but the covariance 

computation of an image itself is done sequentially. Thus, 

we map each image to a thread block, and the pixels in the 

image to the threads in the block.  This enables parallel 

execution of the covariance of an image. In this mapping, 

there would be N
2
 thread blocks (NxN two dimensional 

blocks). Note that the maximum number of threads in a 

thread block is either 512 or 1024 depending on the type of 

GPUs. If the pixel size is larger than this limit, each thread 

has to carry on the computations for multiple pixels 

sequentially. 

To obtain the covariance of the image that the thread 

block is mapped to, the threads in the block must perform 

sum reduction. After each thread completes the computation 

for one or more pixels that it is assigned, they must 

synchronize for the reduction. Such synchronization can be 

done through atomic operation or using by parallel reduction 

on the shared memory  

 

4.2. Eigenface Computation Task 

The complexity of this task is in O(NMP). We can execute 

both M eigenvectors and N training images in parallel with P 

pixels. In this mapping, there would be NxM thread blocks 

and each block is assigned P pixels. Alternatively, if we 

parallelize only N images, along with P pixels, the kernel 

will have N thread blocks and it will be invoked M times 

sequentially from the CPU, as shown in Figure 2(a).  

However, these mappings are inefficient since the sum 

reduction is required for each of the pixel in the same 

location in N images. Since this reduction requires 

synchronization among threads across different thread 

blocks, we must use atomic operations on global memory, 

which is very costly. Alternatively, we can store the 

intermediate values in global memory first, and perform 

synchronization in a separate kernel. Still, this incurs 

significant overhead.  

Thus, we parallelize M eigenvectors, along with P 

pixels, and invoke the kernel N times sequentially from the 

CPU, as shown in Figure 2(b). If we parallelize over M 

eigenvectors, the same image, imagen, is mapped to a thread 

block, each with the mth eigenvector. To obtain the mth 

eigenface, sum reduction is required. In this mapping, we 

only need to accumulate the result from the current 

invocation to the partial results already obtained from the 

previous invocations of the kernel. Another advantage of 

this mapping is that all thread blocks read the same image, 

which would results in better locality for the cache. 
 

4.3. Projecting to Subspace Task 

The complexity of this task is also in O(NMP). This can 

be parallelized both in N and M, along with P. Unlike 

Eigenface computation task, this mapping needs to perform 

sum reduction only for the same image, not for different 

images. It generates the single reduced value, wnm, for each 

of NM thread blocks. 
 

(a) (b)

imagen,

eigen0

imagen,

eigen1

imagen,

eigenM-1

TB(0) TB(1) TB(M-1)

..

GPU kernel

foreach n in N images

CPU

image0,

eigenm

image1,

eigenm

imageN-1,

eigenm

TB(0) TB(1) TB(N-1)

..

Sum Reduction per pixel+

GPU kernel

foreach m in M eigenvectors

CPU

 

Figure 2. (a) NP mapping where there are N thread 

blocks and (b) MP mapping where there are M thread 

blocks 

4.4. Increasing Block Level Parallelism 

As we produce more thread blocks, it increases the potential 

parallelism, providing enough thread blocks that an SM will 

execute simultaneously. We can change the number of 

thread blocks by changing the number of pixels, T, which is 

assigned to a thread: if P is larger than the number of threads 

in a block, a thread must compute for multiple pixels 

sequentially. If we assign smaller T to a thread, we will have 

more than one thread blocks for each image, resulting in a 

larger number of thread blocks in the system. This could in 

turn increase the throughput and reduce the overall 

execution time, if it suffered from insufficient parallelism.   

However, as the number of thread blocks increases, it 

may worsen the cache locality: too many concurrent thread 

blocks could pollute the cache and, when a thread block is 

resumed, it would find that its contents had been replaced in 

the cache. Moreover, additional reduction must be 

performed across multiple thread blocks (for the same 

image), which incurs overhead.  

When smaller T is set, the gain that could be obtained 

with the sufficient parallelism with the increased number of 

thread blocks, and the loss that could come from the 

increased cache misses and the additional reduction, will be 

different for each kernel.  

 

5. EXPREIMENTAL RESULTS 

 

We used the C/OpenCV [3] implementation obtained from 

[4] as our reference baseline and executed this single 

threaded C implementation on Core i7 3.40 GHz machine. 

We implemented the three tasks in CUDA as discussed in 

the previous section and executed on a NVIDIA GTX580. 

We used images from FERET DB [8], whose pixel size is 

300x300.  
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5.1. Effects of Thread Block Number 

As discussed in section 4.4, varying the number of 

pixels, T, that are assigned to a thread changes the total 

number of thread blocks executed on a GPU. Figure 3 shows 

the execution time of three tasks when T varies. As shown in 

Figure 3(a), Covariance Matrix Computation (CMC) task 

takes shortest time when T is 200. Since CMC task already 

has sufficient parallelism of at least N
2
 thread blocks, having 

small T results in too many concurrent thread blocks, which 

also increases synchronization overhead and worsen the 

cache locality. Thus, the execution time decreases as T 

increases. When T is larger than 200, it starts to increase as 

the parallelism becomes insufficient.  

As discussed in section 4, Eigenface Computation (EC) 

task has only M thread blocks. Thus, the execution time of 

EC decreases as T decreases, as shown in Figure 3(b). 

Projecting to Subspace (PS) task has at least NM thread 

blocks and shows a similar trend in CMC task. In this case, 

the best execution time is obtained when T is 10. 
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(a)  Covar. Matrix Computation task 
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(c) Projection to Subspace task 

Figure 3. The execution time (msec) of each CUDA task 

when the number of pixels per thread (T) changes 

 

5.2. Execution Time Comparison   

We selected the best T value for each task in CUDA, 

and compared the execution time with the C implementation. 

The execution time of the CUDA task includes the memory 

transfer time between CPU and GPU memory, and memory 

allocation time as well as the kernel execution time. Figure 4 

shows the speedup of the three tasks as the number of N 

increases. CMC task is accelerated best among the three 

tasks and about 120-fold speedup is achieved when N is 560. 

EC task achieves about 70-fold speedup, and PS task 

achieves about 110-fold speedup. These correspond to 0.5 

second from 56 seconds, 1.6 second from 108 seconds, and 

1 second from 112 seconds. The end-to-end comparison 

including Jacobi method results in over 30-fold speedup.  
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Figure 4. Speedup of three tasks on GPU when M=N-1 

 

6. RELATED WORK 

 

Although there is plenty of work for face detection on 

GPUs, there is not much work for the acceleration of face 

recognition on GPUs.  

Local Binary Pattern (LBP) based face recognizer on 

GPUs using CUDA is presented in [9]. They parallelized 

three tasks: the one that computes LBP value for an input 

image, the one that computes local histogram from LBP 

values, and the one that computes k-Nearest Neighboring. It 

reports a 29-fold speedup was achieved. 

Acceleration of PCA based face recognition is presented 

in [10]. It only parallelized Projecting to subspace task. For 

testing of face images, it additionally parallelized the task 

that calculates the distance, in the subspace, between the test 

image and the one in the DB. It reports a 200-fold speedup 

on GTX480. However, the pixel size was very small as 

16x16, and the whole image is mapped to a thread. This 

approach is hard to achieve efficient acceleration when the 

pixel size is larger. By contrast, in our work, we parallelized 

all three tasks. Moreover, we investigated the impact of 

different mappings.  
 

7. CONCLUSION 

 

    In this paper, we have discussed different possible 

mappings of PCA based face recognition onto GPUs. We 

have successfully accelerated the overall PCA based face 

recognition by 30 folds when the training image was 560. 

With larger number of images, we expect further higher 

speedup.  As we have accelerated the OpenCV APIs for 

general PCA, we envision the proposed CUDA 

implementations can also be used for other PCA based 

applications. 
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