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ABSTRACT 

 
Polar codes have emerged as important channel codes because of 
their capacity-achieving property. For low-complexity polar 
decoding, hardware architectures for successive cancellation (SC) 
algorithm have been investigated in prior works. However, belief 
propagation (BP)-based architectures have not been explored in 
detail. This paper begins with a review of min-sum (MS) 
approximated BP algorithm, and then proposes a scaled MS (SMS) 
algorithm with improved decoding performance. Then, in order to 
solve long critical path problem in the SMS algorithm, we propose 
an efficient critical path reduction approach. Due to its generality, 
this optimization method can be applied to both of SMS and MS 
algorithms. Compared with the state-of-the-art MS decoder, the 
proposed (1024, 512) SMS design can lead to 0.5dB extra 
decoding gain with the same hardware performance. Besides, the 
proposed optimized MS architecture can also achieve more than 
30% and 80% increase in throughput and hardware efficiency, 
respectively. 
 

Index Terms—Polar codes, VLSI, belief propagation, scaled 
min-sum, critical path reduction 
 

1. INTRODUCTION 
 
As the first provable capacity-achieving error correction codes 
(ECC) [1], polar codes have become one of the most favorable 
topics in information theory. To date, many researchers in 
information theory community have investigated various aspects 
of polar codes, ranging from code construction [2-8] to efficient 
decoding algorithms [9-14]. However, with the exception of [15-
19], not many efforts have addressed the hardware design of polar 
decoders. In [15-18], several successive cancellation (SC)-based 
architectures were proposed. By applying local optimal decoding 
schemes, these SC decoders can achieve good error-correcting 
capability with low complexity. However, for high-speed real-time 
applications, this serial decoding scheme will become the potential 
bottleneck. On the other hand, the belief propagation (BP) 
algorithm [14] has particular advantages with respect to 
parallelism and low latency. However, current BP-based decoders 
[19] are still less competitive for practical applications due to their 
insufficient error-correcting capability. 

In this paper, we first review the current non-scaled min-sum 
(MS) approximated BP algorithm. Then, similar to the approach 
used in LDPC decoding [20], we propose a performance-improved 
scaled min-sum (SMS) polar decoding algorithm. Then, to 
overcome the long critical path problem in the SMS algorithm, we 
propose an efficient critical path reduction approach at the 
architecture level. Due to its generality, this optimization method 
can be applied to both SMS and MS algorithms. Compared with 
the state-of-the art MS decoder, the proposed (1024, 512) SMS 
design can achieve 0.5dB decoding gain with the same hardware 

performance. In addition, the proposed optimized MS architecture 
can also achieve more than 30% and 80% increase in throughput 
and hardware efficiency, respectively. 

This paper is organized as follows. Section 2 presents a brief 
review of the current MS algorithm. The proposed SMS algorithm 
is presented in Section 3. Section 4 proposes an efficient critical 
path reduction approach, and hardware architectures of optimized 
SMS and MS decoding based on this approach. Performance 
characteristics of different polar decoders are compared in Section 
5. Section 6 draws conclusions. 
 
2. REVIEW OF BP DECODING FOR POLAR CODES 
 
2.1. Polar codes 
Polar codes are derived from the concept of channel polarization. 
As proved in [1], with some recursive encoding approach, the 
reliability of decoded bits will be polarized based on their 
positions at the codeword. Therefore, a good polar code can be 
constructed by assigning information bits over the reliable 
positions, and setting “0” bits over the highly unreliable positions. 
In general, these “0” bits are called “frozen” bits while the bits in 
the source data are called “free” bits. For the details of polar 
encoding, the reader is referred to [1]. 
 
2.2. Current BP decoding with min-sum approximation 
Derived from factor graph theory [21], the belief propagation (BP) 
algorithm can be applied for polar decoding [14]. Generally, an (n, 
k) polar code (n=2m) can be iteratively decoded via an m-stage 
factor graph network consisting of (m+1)n nodes. Each node (i, j) 
is associated with two types of likelihood message: left-to-right 
and right-to-left. In BP decoding procedure, these messages are 
propagated and updated between adjacent nodes. 

Fig. 1(a) shows an example BP factor graph for the case of (8, 
4) polar code. Here the graph network has a total of m=log28=3 
stages. Each stage consists of n/2=4 processing elements (PEs) 
(see Fig. 1(b)), which are used for updating the propagating 
messages. To avoid overflow, these updates are always performed 
in logarithmic domain. Therefore, the propagating messages are 
based on logarithmic likelihood ratio (LLR) form, and are updated 
using equations (1). Here ,
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Based on equations in (1), the likelihood messages can be 
propagated and updated iteratively in the factor graph. After the 
decoder reaches maximum iteration number (max_iter), node (i, 1) 
will output the decoded bits based on hard decision of messages. 

It should be noted that the equations in (1) represent the min-
sum approximation of the BP algorithm. Compared with the 
original BP algorithm, this approximated version is more suitable 
for hardware implementation [19]. However, its error-correcting 
performance is degraded due to the approximation. In the next 
section, this problem is addressed further. 
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Fig. 1. (a) Factor graph of (8, 4) polar code. (b) Diagram of PE. 

 
3. PROPOSED SCALED MIN-SUM ALGORITHM  

 
As mentioned in Section 2.2, the MS algorithm described by (1) 
has some inherent performance disadvantages due to the 
approximation (see Fig. 2). In order to avoid performance loss, 
similar to the approach used in LDPC decoding [20], we propose 
to introduce a scaling parameter s to offset the approximation error: 
For each time of min-sum operation, the output will be scaled by s. 
Accordingly, the original non-scaled MS algorithm described by (1) 
is modified to a scaled MS (SMS) version described by (2). 
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As shown in Fig. 2, the introduction of scaling parameter helps 

improve the decoding performance greatly. For the example (1024, 
512) polar code with max_iter=60, the proposed SMS algorithm 
with s=0.9375 can obtain an extra 0.5 dB decoding gain over its 
non-scaled counterpart. In that case, the SMS algorithm can 
achieve a similar error-correcting performance with the original 
BP and SC algorithms. Notice that since s=0.9375=1-2-4, the 
scaling operation can be implemented with a simple shift-addition 
circuit. 
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Fig. 2. Performance of different polar decoding algorithms. 
 

4. THE PROPOSED HARDWARE ARCHITECTURES 
 
4.1. Long critical path problem of SMS algorithm 
As mentioned in Section III, different from the MS algorithm, the 
SMS algorithm uses a scaling parameter s to offset the error in the 
min-sum approximation. Although the introduction of s can 
improve error-correcting performance greatly, this extra scaling 
operation increases the critical path of the SMS decoder. In this 
subsection, the effect of this increase is analyzed in detail. 
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Fig. 3. Architecture of (a) Type-I block (b) Type-II block. 

 
Recall that the LLR computation of the SMS algorithm is 

described by (2). In general, these four equations can be 
categorized into two types: Type-I d=a+s*sign(b)sign(c)min(|b|,|c|) 
and Type-II d=s*sign(a)sign(b+c)min(|a|,|b+c|). Accordingly, the 
high-level architectures of these two types of computation can be 
developed and are shown in Fig. 3. Here scale unit is the block that 
implements the scaling function. Besides, S2C unit carries out the 
conversion of number representation from sign-magnitude (SM) 
form to 2’s complement form, and C2S performs the inverse 
conversion. Fig. 4 shows the architectures of these functional units 
with q-bit quantization. It can be seen that the S2C, C2S and scale 
units have the similar critical path delay (≈Tadder). Since the critical 
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path delay of “comparator & selector” unit is similar to that of an 
adder, therefore, according to Fig. 3, the critical path delay of 
Type-I or Type-II block is approximately equal to 5Tadder. 

 
Fig. 4. Inner architecture of (a) S2C unit (b) C2S unit (c) scale unit 
(s=0.9375=1-2-4). 
 

Notice that for original non-scaled MS algorithm described by 
(1), its critical path delay is only about 5-1=4Tadder since the scale 
unit in Fig. 3 is not used in this case. Therefore, the critical path 
delay of SMS polar decoder will be at least 25% larger than the 
MS decoder. In other words, although the SMS algorithm can 
provide better error-correcting performance, the penalty on long 
critical path makes it still less competitive with respect to hardware 
performance. In the next subsection, we propose an efficient 
optimization method to reduce its critical path. 

 
4.2. The proposed critical path-reduction approach for SMS 
Recall the computation in SMS are d=a+s*sign(b)sign(c)min(|b|,|c|) 
and d=s*sign(a)sign(b+c)min(|a|,|b+c|), which contain addition, 
comparison and scaling operations. According to Fig. 3, the critical 
path of the Type I and II blocks is mainly from the addition 
operations used in the S2C unit, non-constant adder and C2S unit. 
Intuitively, the timing cost of this addition is too high since nearly 
two-third of the critical path is not from actual addition, but from 
the conversion of number representation. In this subsection, we 
show how unnecessary latency in the S2C conversion operation 
can be eliminated leading to a reduced critical path. 

Without loss of generality, we denote the targeted addition 
operation as z=x+y, where x, y and z are represented in sign-
magnitude (SM) form. Before x and y are input into the non-
constant adder in Fig. 3, it is clear that they must first be converted 
into 2’s complement form by S2C unit. With the observation on 
S2C conversion scheme in Fig. 4(a), it can be discovered that the 
output from constant adder in S2C unit will be selected only when 
the input is negative (sign=1). For the case of positive input 
(sign=0), the constant adder, which dominates the critical path in 
the S2C unit, will not affect the final output. This observation 
suggests that, if we can find a new constant-adder-free S2C 
conversion scheme for z=x+y, the new S2C unit, as well as the 
overall z=x+y operation, will have a much shorter critical path. 

To explore this possibility, we revisit the inner procedure of 
SM-based z=x+y operation. This operation involves S2C and C2S 
conversions, and these conversions depend on the sign part of x 
and y; therefore, four possible cases are discussed. 

 
4.2.1 x is positive and y is positive 
When both of x and y are positive, their sign-magnitude forms are 
just the same with 2’s complement forms. As a result, the constant 
adder in S2C unit will not be used in this case.  
 

4.2.2 x is negative and y is negative 
When both of x and y are negative, z=x+y= -((-x)+(-y)), thus the 
magnitude part of z is just the sum of magnitude of x and y, while 
the sign part of z is always negative(=1). Since –x and –y are 
positive, according to Section 4.2.1, their sum does not need the 
constant adder in S2C unit. Therefore, in order to sum negative 
SM-based x and y, S2C unit only needs to change the sign of x and 
y and retain the magnitude part. Similarly, C2S unit only needs to 
change the sign part of the output from a non-constant adder. As a 
result, the constant adder in S2C unit can also be saved in this case. 
 
4.2.3 x is positive and y is negative 
When x is positive and y is negative, because x has the same sign-
magnitude and 2’s complement form, we only need to perform 
representation conversion of y. In this case, for functional validity, 
the constant addition for S2C conversion is required; however, we 
can merge this constant addition into the outer non-constant adder. 
Recall that the mission of constant adder in S2C unit is just to sum 
an LSB-positioned “1” with bit-inversed y (see Fig.4 (a)). 
Therefore, if we replace 1-bit half-adder (HA) in the original q-bit 
non-constant adder (Fig. 5(a)) by a 1-bit full-adder (FA) (Fig. 5(b)), 
the constant “1” can still be summed up when it is selected as the 
carry input of the full-adder. As a result, the constant adder can 
now be removed from S2C unit without any functional invalidity. 

 
Fig. 5. (a) original non-constant adder (b) modified adder(mAdder). 

 
4.2.4 x is negative and y is positive 
Due to the symmetry of addition and generality of x and y, this 
case is similar to 4.2.3. 
 

Summarizing the above four cases, it can be concluded that, 
instead of using constant adder in S2C unit, the SM-based addition 
z=x+y, can still be accurately carried out with slight modification 
of S2C unit, non-constant adder and C2S unit. The architectures of 
these modified units, denoted as mAdder, mS2C, and mC2S, are 
shown in Fig. 5(b), Fig. 6(a) and Fig. 6(b), respectively. Then, 
based on these basic units, the hardware architectures of modified 
Type-I and Type-II blocks for SMS algorithm can now be 
developed (see Fig. 7). From Fig. 7 it can be seen that the critical 
path of modified Type-I or Type-II blocks is about 4Tadder, which 
is the same as that of the non-scaled MS decoder. 
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Fig. 6. Architecture of (a) mS2C unit (b) mC2S unit. 
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Fig. 7. (a) Modified Type-I block (b) Modified Type-II block. 
 
4.3. Extending the proposed method to MS algorithm 
In Section 4.2 we presented a critical path reduction approach for 
the SMS algorithm. Since this method is a general solution that 
optimizes SM-based z=x+y operation, it can also be applied to the 
non-scaled MS algorithm in equations (1). In that case, the 
corresponding modified Type-I and Type-II blocks for MS 
algorithm can be easily derived by just removing the scale unit in 
Fig. 7. As a result, the critical path in this scenario will be reduced 
from 4Tadder to 3Tadder. 
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Fig. 8. (a) The overall architecture (b) Architecture of PE. 
  
4.4. Overall architecture 
Based on the aforementioned modified Type-I and Type-II blocks, 
the systolic polar decoding architecture can now be developed. Fig. 
8(a) shows the overall architecture for (n, k) polar code, which 

consists of m=log2n stages. Between adjacent stages register-based 
pipelines are inserted to store propagating messages. In each stage, 
there are n/2 processing elements (PEs), and the inner architecture 
of a PE is shown in Fig. 8(b). Here the designs of the modified 
Type-I and Type-II blocks depend on the choice of algorithm, 
which has been described in Section 4.2 for the SMS algorithm 
and in Section 4.3 for the non-scaled MS algorithm.  

On the aspect of decoding procedure, in the j-th cycle of each 
iteration, the PEs of stage-j are activated to update propagating 
messages. Therefore, a total of m cycles are required for one 
iteration. Considering maximum iteration number is max_iter, the 
total decoding latency will be max_iter*m cycles. 
 

5. PEFORMANCE ANAYLSIS AND COMPARSION 
 
In this section, performance of different BP-based polar decoding 
architectures is analyzed. Table 1 shows the performance of the 
proposed scaled-MS (SMS) decoder and reported MS design [19] 
for (1024, 512) polar code. Because SMS algorithm can obtain 
extra decoding gain over its non-scaled counterpart, for fair 
comparison, in this table we also list the MS decoder with the 
proposed optimization described in Section 4.3. 

From Table 1 it can be seen that the proposed SMS decoder 
can obtain extra 0.5 dB decoding gain over the state-of-the-art MS 
design with the same hardware performance. In the non-scaled 
scenario, our optimized MS architecture can also achieve more 
than 30% and 80% increase in throughput and hardware efficiency, 
respectively. Therefore, the proposed two architectures are good 
candidates for high-performance polar decoder design. 

 
Table 1. Performance of different (1024, 512) polar decoders 

(n=1024, m=10, max_iter=60, s=0.9375 with q-bit quantization) 

Arch. Proposed-SMS 
(Section 4.2) 

Proposed-MS
(Section 4.3) MS [19] 

Algorithm Scaled-MS MS MS 
# of PE 5120 5120 5120 

Gate count 
in 1 PE ~40q ~30q ~46q 

# of REG* ~24576q ~24576q ~24576q
Total gate 

count† ~278528q ~227328q ~309248q

Critical path ~4Tadder ~3Tadder ~4Tadder 
Latency 600 cycles 600 cycles 600 cycles

Throughput 
(normalized) 1 1.33 1 

Hardware 
efficiency 

(normalized)‡
1.11 1.81 1 

Decoding gain
over MS 0.5dB 0 0 

* Here REG indicates 1-bit register. 
† 1-bit REG is converted to three 2-input XOR according to [22]. 
‡ Hardware efficiency is the ratio of throughput to total gate count. 
 

6. CONCLUSION 
 

This paper presents a novel SMS polar decoding algorithm. With 
the proposed critical path reduction method, optimized SMS and 
MS architectures are developed. Comparison results show that the 
proposed architectures have significant advantages with respect to 
hardware performance and error-correcting capability. 
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