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ABSTRACT

One category of fast full-search block matching algorithms
(BMAs) is based on the fast Fourier transformation (FFT).
This paper proposes a parallel implementation method of
FFT-based full-search BMAs. The FFT-based full-search
BMAs are much faster than the direct full-search BMA,
and its accuracy is as same as the direct full-search BMA.
However, these are not designed for parallel processing. The
proposed method divides the search window into multiple sub
search windows using the overlap-save method, and the FFT-
based full-search BMA is applied to each sub search window.
These sub search windows are processed in parallel. By di-
viding the search window, the method can not only process in
parallel, but also select the efficient FFT size. Furthermore,
the method can also calculate two cross-correlations at the
same time. These properties also contribute to speeding up
of the block matching. The experimental results shows that
the method on 6 cores CPU is about 11 times faster than the
conventional FFT-based full-search BMA.

Index Terms— Block matching, FFT, Overlap-save
method, Parallel processing, Fast algorithm

1. INTRODUCTION

A block matching is widely used in many fields, including
pattern recognition, object tracking, motion detection, com-
puter vision, motion estimation, inpainting and image denois-
ing [1–6]. Because of its efficiency and simplicity, it has been
also widely adopted in many video coding standards, such
as H.263, H.264, MPEG-2, and MPEG-4. However, the di-
rect full-search block matching algorithm (with exhaustively
searches for every possible candidate in the search window to
find the most similar block) imposes a heavy computational
load, which makes it almost impossible to use in any applica-
tion. To solve this problem, many fast block matching algo-
rithms (BMAs) have been developed. Their basic approaches
can be generally divided into three types.

The first type uses an approximative search window in-
stead of a direct full search window. For example three-step
search [7], four-step search [8], and diamond search [9] are

(a) Macroblock
b(x, y).

(b) Search window
f (x, y).

(c) Extended signal
gb(x, y).

Fig. 1. The conceptual diagram for signals.

based on this approach. While the computational load is de-
creased, the accuracy is less than that of a full-search BMA,
and the initial value affects the results.

The second type has the same performance as a direct full-
search BMA in terms of accuracy, but imposes a lighter com-
putational load so processing speed is higher. The succes-
sive elimination algorithm (SEA) [10] and the fast full-search
block matching algorithm [11] are representatives of this type.
However, the degree to which the computational load can be
reduced depends on the input signal.

These first two types operate in the spatial domain. The
third type shifts the spatial domain problem into the fre-
quency domain by using phase correlation [12] or cross-
correlation [13–16]. The third type of BMAs ensures the
same accuracy as a direct full search does. The same time,
because of using FFT approach, its computational load is low
and does not depend on the input signal. In all these FFT-
based full-search BMAs, the algorithm of Kiya et al. [16] has
the highest processing speed. However, these algorithms are
not designed for parallel processing.

This paper proposes a parallel implementation method for
the FFT-based full-search BMAs. The proposed method di-
vides the search window into multiple sub search windows
using the overlap-save method (OLS) [17], and then, the FFT-
based full-search BMA is applied to each sub search window.
These sub search windows are processed in parallel. Divid-
ing the search window enables to select the efficient FFT size.
Moreover, the method can calculate two cross-correlations at
the same time. The experimental results shows that the pro-
posed method is 10.71 times faster than the conventional FFT-
based full-search BMA [16] on 6 cores CPU under the opti-
mal conditions.
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2. PREPARATION

2.1. Block matching

As shown in Figs. 1 (a) and (b), let 2-D signals b(x, y) and
f (x, y) be a macroblock and a search window, respectively.
Suppose that the search window is bigger than the mac-
roblock. That is,

b(x, y), x = 0, 1, . . . , A − 1, y = 0, 1, . . . , B − 1, (1)
f (x, y), x = 0, 1, . . . ,M − 1, y = 0, 1, . . . ,N − 1, (2)

A < M, B < N, x, y, A, B,M,N ∈ Z,
where Z denotes the set of integer numbers.

Inside the search window, there are (N−B+1)× (M−A+1)
different blocks which each block is the same size as b(x, y).
All these different blocks are compared with b(x, y) to find
the most similar one. This procedure can be defined as the
full-search block matching.

An FFT-based BMA generally uses the sum of squared
differences (SSD) criterion. The SSD can be expressed as
follows:

SSDb, f (u, v) =
A−1∑
x=0

B−1∑
y=0

{ f (x + u, y + v) − b(x, y)}2, (3)

u ∈ [0,M − A + 1], v ∈ [0,N − B + 1], u, v ∈ Z.
Variables u and v are shift amounts. The purpose of full-
search block matching is to find (u0, v0) that yields the mini-
mum matching error:

SSDb, f (u0, v0) = min
u,v
{SSDb, f (u, v)}. (4)

2.2. FFT-based full-search BMA

This section describes the conventional FFT-based full-search
BMA [16]. First, by zero-padding b(x, y), signal gb(x, y)
which is the same size as f (x, y)is generated as shown in
Fig. 1(c). Then, Eq. (3) can be rewritten as

SSDb, f (u, v) = Cgb − 2corgb, f (u, v) + S f 2 (u, v), (5)

where,

Cgb =

B−1∑
y=0

A−1∑
x=0

{b(x, y)}2, (6)

corgb, f (u, v) =
N−1∑
y=0

M−1∑
x=0

gb(x, y) f (x + u, y + v), and (7)

S f 2 (u, v) =
B−1∑
y=0

A−1∑
x=0

f 2(x + u, y + v). (8)

The first term, Cgb , on the right in Eq. (5), is independent
of the shift amounts (u, v), which means it would not affect
the result of the block matching. Then, (u0, v0) that yields the
minimum matching error is calculated by

(u0, v0) = arg max
u,v

{SSD’b, f (u, v)}. (9)

Fig. 2. The block diagram of the method. (L = 4, FFT∗ means
complex conjugate of FFT).

where,

SSD’g′b, f (u, v) = 2corg, f (u, v) − S f 2 (u, v). (10)

S f 2 (u,v) can efficiently be carried as the recursive summation
[19,20]. An example of the recursive summation is as follows.
For simplicity, this example considers 1-D signals.

S f 2 (u) =


A−1∑
k=0

f 2(u + k), u = 0,

S f 2 (u−1) − f 2(u−1) + f 2(u+A−1), u > 0.
(11)

Moreover, corgb, f (u, v), a cross-correlation between gb(x, y)
and f (x, y), can be calculated by using FFT. Thus, (u0, v0) in
Eq. (9) can easily be found.

3. PROPOSED METHOD

The proposed method divides the search window into multiple
sub search windows to parallel processing. Then, the FFT-
based full-search BMA is applied to each sub search window.
These sub search windows are processed in parallel. After all
the processes are finished, the results of the FFT-based BMAs
are combined. Fig. 2 shows the outline of the method.

By dividing the search window, the method can not
only process in parallel, but also select the efficient FFT
size. Furthermore, the method can also calculate two cross-
correlations at the same time. This section describes about
dividing the search window by OLS, the FFT-based BMA
for each sub seach window, and concurrent calculation of the
cross-correlations.

3.1. Dividing the search window by OLS and the FFT-
based full-search BMA

The overlap-save method (OLS) is one of the calculation
method for a block convolution [17, 18].
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Fig. 3. The conceptual diagram for dividing the search win-
dow.

First, as shown in Fig. 3, the search window is divided
into L of M1 × N1 sized multiple sub search windows using
OLS. Each sub search window is overlapped A − 1 and B − 1
points with neighbor one. Subscript i denotes the index of sub
search windows (i = 1, 2, . . . , L).

Then, SSD’g′b, fi (u, v) is calculated as

SSD’g′b, fi (u, v) = 2corg′b, fi (u, v) − S fi2 (u, v), (12)

u ∈ [0,M1 − 1], v ∈ [0,N1 − 1],

where g′b(x, y) is a zero-padded macroblock whose size is
M1 × N1. The cross-correlation corg′b, fi (u, v) between g′b(x, y)
and fi(x, y) can be calculated easily by using FFT. It is written
as,

corg′b, fi (u, v)=
1

M1N1

M1−1∑
k=0

N1−1∑
l=0

{G′b(k, l)Fi(k, l)}W−uk
M1

W−vl
N1
,

(13)
where G′b(k, l) and Fi(k, l) are the DFTs of g′b(x, y) and fi(x, y),
respectively. G′b(k, l) represents the complex conjugate of
G′b(k, l) and Wn

N = e− j2πn/N , where j is the square root of −1.
Finally, SSD’b, f (u, v) is obtained by combining all the

SSD’g′b, fi (x, y) (see Fig. 4). Fig. 5 shows the block diagram
of the FFT-based BMA which applied to each sub search
window.

3.2. Concurrent calculation of the cross-correlations

In most cases, the macroblock and the search window in
the block matching are both real signals. However, the FFT
approach is designed for complex signals. Therefore, the
method can calculate two cross-correlations at the same time.

Fig. 4. The conceptual diagram for combining results of the
FFT-based BMAs.

Fig. 5. The block diagram of the FFT-based BMA.

First, fi(x, y) and fi+1(x, y) are combined to create a new
complex signal f̂ (x, y) = fi(x, y) + j fi+1(x, y). The DFT of
f̂ (x, y) can be written as F̂(x, y) = Fi(x, y)+ jFi+1(x, y). There-
fore, the cross-correlation between f̂ (x, y) and g′b(x, y) can be
written as,

corg′b, f̂
(u, v) =

1
M1N1

M1−1∑
k=0

N1−1∑
l=0

{G′b(k, l)F̂(k, l)}W−uk
M1

W−vl
N1

=
1

M1N1

M1−1∑
k=0

N1−1∑
l=0

{G′b(k, l)(Fi(k, l)+ jFi+1(k, l))}W−uk
M1

W−vl
N1

=
1

M1N1

M1−1∑
k=0

N1−1∑
l=0

{G′b(k, l)Fi(k, l)}W−uk
M1

W−vl
N1

+ j
1

M1N1

M1−1∑
k=0

N1−1∑
l=0

{G′b(k, l)Fi+1(k, l)}W−uk
M1

W−vl
N1

= corg′b, fi (u, v) + jcorg′b, fi+1 (u, v). (14)

By separating Eq. (14) into the real and imaginary parts,
corg′b, fi (u,v) and corg′b, fi+1 (u,v) are obtained at the same time.
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Fig. 6. The block diagram of the proposed method with con-
current calculation of the cross-correlations. (L = 8).

This property leads to a reduction in computational cost of
the proposed method. Fig. 6 shows the block diagram of
the proposed method with concurrent calculation of the cross-
correlations.

4. EXPERIMENTAL RESULTS

To evaluate the processing time of the proposed method, the
method was implemented, and the experiment was carried
out.

4.1. Conditions

The experiment used the image of 1024 × 1024 pixels, and
the search window sizes were 1024 × 1024 and 512 × 512
pixels. Three images whose sizes were 16 × 16, 32 × 32, and
64×64 pixels were used as the macroblock. The program was
implemented using Microsoft Visual C++ 2010 and OpenCV
2.4.2. The experimental platform was intel Core i7 3930K
CPU at 3.2GHz (6 cores, Hyper-Threading was disabled) with
16GB RAM.

4.2. Results

Fig. 7 shows the processing time of the proposed method and
the conventional FFT-based full-search BMA [16] when the
search window size was 1024×1024. The horizontal axis r of
the graph indicates the ratio of the sub search window size to
the macroblock size (r = M1N1/AB). This figure shows that
the optimal r, which minimizes the processing time exists.
On the other hand, the maximum r, the case of non division
and non parallel processing, is equal to the conventional FFT-
based full-search BMA [16]. Tab. 1 shows the processing
time of the conventional method and the proposed method
(at the optimal r). In each case, the proposed method was

0 500 1000 1500 2000 2500 3000 3500 4000

Fig. 7. The processing time against the ratio of the sub search
window size to the macroblock size (r = M1N1/AB).

Table 1. The processing time of the conventional method and
the proposed method (at the optimal r).

Size (pixels) Processing time (ms) Speeding up
(M × N, A × B) Proposed Conventional (times)

(1024 × 1024, 16 × 16) 23.45 251.17 10.71
(1024 × 1024, 32 × 32) 33.68 285.04 8.46
(1024 × 1024, 64 × 64) 57.40 425.37 7.41

above 6 times faster than the conventional method on 6 cores
CPU. Especially, the proposed method was 10.71 times faster
than the conventional method when the macroblock size was
16 × 16. On the other hand, the proposed method was 8.08
times faster than the conventional method when the search
window size was 512×512 and the macroblock size was 16×
16. The experiment showed that the proposed method became
effective as the search window size became larger.

5. CONCLUSIONS

A parallel implementation method of FFT-based BMAs was
proposed in this paper. By dividing the search window, the
proposed method can not only process in parallel, but also
select the efficient FFT size. Moreover, the method can also
calculate two cross-correlations at the same time. By these
features, the method on 6 cores CPU can achieve the pro-
cessing time that above 6 times faster than the conventional
FFT-based BMA [16].
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