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ABSTRACT

This paper presents a 4×4/8×8/12×12 and QPSK/16-QAM/64-
QAM reconfigurable MIMO detector on a multi-core DSP
platform for different MIMO detection algorithms, includ-
ing multiple-candidate-selection QRSIC (MCS-QRSIC), dis-
tributed K-best, and sorting-reduced K-best detectors. This
study uses an Eigen-value decomposition method to investi-
gate the intrinsic degree of parallelism of MIMO detectors
and allocate the processing elements to DSP cores. MCS-
QRSIC outperforms other detectors in 4 × 4 detection, and
distributed K-best has the best performance in 8×8 and
12×12 MIMO systems. The normalized throughput achieves
188/153/142 Mbps for 64-QAM 4×4/8×8/12×12 MIMO
detections at a 1GHz clock rate with 448 cores.

1. INTRODUCTION

Because high-definition multimedia applications are becom-
ing very popular in mobile communication systems, MIMO
system has evolved from 4 × 4 to 8 × 8 and 12 × 12 in the
next-generation communication systems. ASIC design ap-
proach [1–3] sufficiently supports 4 × 4 and 8 × 8 MIMO
detection. However, the rapid growth of the antenna number
leads to difficulties for the design of an MIMO detector on a
single chip. Thus, many recent works [4–6] tried to imple-
ment the MIMO detector on the multi-core GPU for reconfig-
urability. However, most of them support only 4 × 4 MIMO
detection and do not explore efficient partition of a MIMO
detector on a multi-core platform because of the lower com-
plexity of 4×4 MIMO detector than 8×8 and 12×12 MIMO
detectors. Thus, this study presents a platform-independent
method [7, 8] to explore the intrinsic degree of parallelism
of MIMO detection algorithms. The Eigen-decomposition
method can efficiently partition MIMO detection algorithm
and allocate operations with the proper number of cores. This
study uses a TI TMS320C6678 multi-core DSP processor to
analyze the processing cycles and estimate the throughputs
under many-core platform. The experiment results show that

this design methodology achieves better throughput com-
pared to the available works in the literature.

The rest of this paper is organized as follows. Sec-
tion II describes the system model and the detection algo-
rithms. Section III introduces Eigen-decomposition method
for multi-core MIMO detection algorithms. Section V shows
experimental results. Finally, Section VI makes conclusions.

2. MIMO SYSTEM AND DETECTION ALGORITHM

2.1. MIMO System

Assume that an M × N MIMO system has a flat-fading and
uncorrelated channel with additive white Gaussian noise as
follows:

r̃ = H̃s̃ + ñ, (1)

where s̃ is an M × 1 complex transmitted symbol vector, r̃ is
an N×1 complex received symbol vector, and H̃ is an M×N

complex channel matrix, which is i.i.d. circular symmetric
and every entry of H̃ is complex Gaussian random variable
with 0.5 variance and zero mean per dimension. H̃i,j repre-
sents the channel gain between i-th receive antenna and j-th
transmit antenna. ñ is a complex Gaussian noise vector. In
the DSP implementation, the channel model is reformulated
as its equivalent 2M × 2N real channel model.

2.2. MIMO Detection Algorithms

2.2.1. Multiple-Candidate-Selection QRSIC (MCS-QRSIC)

MCS-QRSIC [1] aims to address the error propagation prob-
lem in the QRSIC detector by selecting Ci candidates for
detected symbol ŝ, as shown in Fig. 1(a). Fig. 1(b) shows
the detection path of MCS-QRSIC for 4 × 4 16-QAM and
(C4, C3, C2, C1) = (4, 4, 1, 1), where four nearest constel-
lation points are selected for ŝ4 and ŝ3, respectively. Each
possible (ŝ4, ŝ3) is used to detect ŝ2 and ŝ1 by general QR-
SIC detection. The corresponding search tree is shown in
Figure 1(b). Eventually, there are sixteen detected symbol
vectors (x4,i4 , x3,i3 , x2,i2 , x1,i1), where i4 = 1, ..., C4, i3 =
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Fig. 1: (a) Multiple-candidate-selection with Ci = 4 and (b)
tree expansion for MCS-QRSIC (4, 4, 1, 1).
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Fig. 2: (a) Tree expansion for K-best detection (K=2) and (b)
Schnor-Euchner enumeration

1, ..., C3, i2 = 1, ..., C2, i1 = 1, ..., C1 and xj,i denotes i-th
possible symbol for ŝj . We can detect the optimal result from
these sixteen paths by the ML detection.

2.2.2. Distributed K-best Detector

The generic K-best algorithm fixes the computation complex-
ity in the sphere MIMO detector. However, it usually requires
a larger K to achieve an acceptable performance for high-
dimensional MIMO and high modulation order. This leads to
a large number of partial Euclidean distance (PED) calcula-
tions. Thus, distributed K-best detection [2] [9] was proposed
to reduce the calculation complexity. The generic K-best de-
tector has to calculate all K · M constellation points for each
layer if the modulation size is M (Fig. 2(a)). Therefore, dis-
tributed K-best uses Schnor-Euchner enumeration (Fig. 2(b))
to determine the order of the expanded nodes of each parent
node. Then, the best nodes are sequentially selected from K

best expanded nodes of K parent nodes. This sorting method
reduces computation complexity from (K ·M ) to K for both
Euclidean distance and sorting calculations.

2.2.3. Sorting-Reduced K-best Detector

The distributed K-best algorithm requires K cycles to search
K best child nodes among K · M expanded nodes. The
sorting-reduced K-best algorithm aims to further decrease the
sorting cycles. Because some child nodes are more likely
to be selected, the proposed algorithm directly selects them
without sorting. Because the first expanded node of the first
parent node has the highest probability, skipping sorting this
node can reduce some processing time to some degree without
degrading much detection performance. For a (K ,S) sorting-
reduced K-best, (K − S) specified child nodes are not sorted
and S nodes are obtained from sorting. Fig. 3 shows an ex-

sorting

1 2 3 4 5 6 7 8

Fig. 3: Signal flow of (8,2) Sorting-Reduced K-best

ample for (8,2) sorting-reduced K-best. The specified child
nodes are p = (1, 1, 2, 3, 4, 5). The number in p indicates
their parent node indices.

3. MULTI-CORE ALLOCATION OF MIMO
DETECTION ALGORITHMS

This study utilizes an Eigen-decomposition of dataflow
graph [7] to evaluate the intrinsic degree of parallism of
the MIMO detection algorithms and partition the MIMO
detection algorithm on DSP cores accordingly.

3.1. Eigen Decomposition of Dataflow Graph

Given a dataflow graph G of an algorithm composed of n

vertexes and m edges. Vertex represents a operation and
edge means dependency. The vertex set of G is V (G) =
{v1, v2, ..., vn} and the edge set of G is E(G) = {e1, e2, ..., em}.
Then, we can formulate a Laplacian matrix L as follows

L(i, j) =







degree(vi) if i = j

−1 if vi and vj are adjecent
0 others

(2)
where degree(vi) is the number of edges connected to the i-th
vertex vi. In the Laplacian matrix, the i-th diagonal entry rep-
resents the number of vertexes being connected to vi and the
off-diagonal entry denotes whether two operations are con-
nected.

Let x be a n variable vector associated with the dataflow
graph G. Then, the value of xT

Lx equals to the sum of square
differences between adjacent vertexes:

x
T
Lx =

∑

(vi,vj)∈E(G)

(xi − xj)
2, (3)

where (vi, vj) ∈ E(G) represents all the operation pairs
(vi, vj) whose vi, vj are linked. x indicates all the possible
ways to cut the graph into two sub-graphs. Then,

x
T
Lx = 4 × (size of edge cut), (4)

where size of edge cut is the number of cutted edges.
Now, the next step is to find a partition that minimizes

the number of edge cut which could reveal the connectivity of
dataflow graph and the intrinsic parallelism. This minimiza-
tion problem can be formulated as

x
∗ = arg min(xT

Lx) subject to x
T
x = 1, (5)
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Fig. 4: (a) Dataflow graph of MCS-QRSIC detector and (b)
sub-graph of MCS-QRSIC detector.

By applying Lagrange multiplier, the above constrained op-
timization problem can be transformed into an unconstrained
one. Then, by taking partial derivative with respect to x, the
problem becomes an eigen-decomposition equation:

Lx − λx = 0 ⇒ Lx = 0, (6)

The eigenvector with zero eigenvalue becomes the null space
of L. Then, the dimension of null space equals the number of
zeros, and the degree of parallelism becomes

degree of parallelism = dim(N(L)) = nullity(L) (7)

3.2. Partition of MCS-QRSIC Detector

Fig. 4(a) depicts the dataflow graph of a 2 × 2 and QPSK
MCS-QRSIC detector. The MC-QRSIC detector cannot con-
currently search the shortest path and calculate Euclidean dis-
tance accross search tree layers due to data dependence be-
tween different layers. Thus, we manually cut the graph to
create the degree of parallelism. Since Eigen-decomposition
method can define either fine-grained operations or coarse-
grained operations as vertex. The corresponding Laplacian
matrix can then be expressed by

Laplacian matrix L =









LA 0 0 0
0 LA 0 0
0 0 LA 0
0 0 0 LA









, (8)

where LA represents a 17 × 17 Laplacian matrix of a coarse-
grain set of operations in Figure 4(b). Based on the Eigen-
decomposition method (7), the degree of parallelism of MCS-
QRSIC detector is four. For a general N × N M -QAM L-
candidate MCS-QRSIC detector, the intrinsic degree of par-
allelism for cut graph becomes ML.

3.3. Partition of Distributed K-best Detector

K-best decoder cannot also concurrently execute operations
among search tree layers. Thus, each tree search layer in dis-
tributed K-best must also be executed sequentially. The pri-
mary reason is that K best parent nodes must be determined
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Fig. 5: (a) Dataflow graph and (b) sub-graph of distributed
K-best.

before the next layer performs the accumulated Euclidean dis-
tance and sorting calculations. So, we focus on the degree of
parallelism in one layer, and Fig. 5(a) shows dataflow graph
of a 16-QAM and K = 3 distributed K-best detector. One-
layer operations (L) are cut into two parts, the accumulation
of Euclidean distance and sorting operation. The first part is
shown in Fig. 5(b), and its corresponding Laplacian matrix
LA is expressed by Equ. (9). Thus, the Laplacian matrix L is
shown in Equation (10). Then, the degree of parallelism is 3.
For a general distributed K-best detector, the intrinsic degree
of parallelism equals K .

Laplacian matrix LA =













1 −1 0 0 0
−1 3 −1 −1 0
0 −1 2 −1 0
0 −1 −1 3 −1
0 0 0 −1 1













(9)

Laplacian matrix L =





LA 0 0
0 LA 0
0 0 LA



 (10)

3.4. Partition of Sorting-Reduced K-best Detector

In the distributed K-best detector, the degree of parallelism of
the sorting operations equals 1, and the operations in the fol-
lowing layers cannot be executed in advance due to the data
dependence, that is, the K best nodes must be selected to ex-
pand nodes for the next layer. Thus, the sorting-reduced K-
best detector aims to reduce the sorting latency, and thereby
increases the throughput. Its degree of parallelism is the same
as that of a distributed K-best detector with the same K .

4. EXPERIMENTAL RESULTS

Figure 6 shows the BER performances of 12 × 12 MIMO
detection for 16-QAM and 64-QAM. For 8x8 and 12x12
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Table 1: Comparison with other works
This work [4] [5] [6]

Platform TI TMS320C6678
Nvidia Tesla

C2070
Nvidia Tesla

C2050
Nvidia

9600GT
Ncore 8 448 448 64

Frequency 1 GHz 1.5 GHz 1.5 GHz 1.625 GHz

Algorithm Distributed K-best
Sorting-Reduced

K-best
MCS-QRSIC fully parallel FSD MMSE

multi-pass trellis
traversal

. Output Hard Hard Hard Soft Hard Soft
Antenna 4 4 4 4 4 4

QPSK(Mbps) 0.47 26.43 0.56 31.46
stage=4

212 141 None None 20.5 88.3
3.17 177

16QAM(Mbps) 0.96 53.81 1.06 59.33
stage=2

92.31 61.54 None None 15.3 65.9
6.92 387.5

64QAM(Mbps) 1.325 74.25 1.75 97.88
stage=2

17.2 11.46 70 46 3.8 16.3
3.37 188

Table 2: Throughputs for 8×8 and 12×12 MIMO detectors.
This work

Platform TI TMS320C6678
Ncore 8

Frequency 1 GHz
Algorithm Distributed K-best SR K-best MCS-QRSIC
. Output Hard Hard Hard
Antenna 8 8 8

QPSK(Mbps) 0.44 24.57 0.52 29.1
stage=4

3.55 200

16QAM(Mbps) 0.9 50.33 1.01 57
stage=2

7.15 400

64QAM(Mbps) 1.272 71.26 1.66 93.3
stage=2

2.75 153.77
Antenna 12 12 12

QPSK(Mbps) 0.41 23.07 0.49 27.31
stage=4

1.83 102.62

16QAM(Mbps) 0.85 47.66 0.95 53.17
stage=2

3.66 205.2

64QAM(Mbps) 1.27 71.21 1.55 87.1
stage=2

2.55 142.77

MIMO detectors, the distributed K-best has the best perfor-
mance because it efficiently sorts and selects the expanded
child nodes in the tree-search detection. Therefore, it can
effectively reduce computation complexity. However, K-best
algorithm suffers from error floor effect especially for 16-
QAM. Fig. 6(a) shows that the MCS-QRSIC outperforms the
distributed K-best in BER performance. Fig. 6(a) also shows
that the performance of the sorting-reduced 16-QAM K-best
approximates that of the distributed K-best K=7 while its cy-
cle count is about 90 % of distributed K-best. For 64-QAM,
BER performance of sorting-reduced K-best approaches that
of the distributed K-best K=5 while it also saves about 9 %
cycle counts. Table 1 compares the proposed MIMO detector
with other relative works. The data rates are normalized to
448 cores and 1 GHz clock frequency as follows:

normalized data rate =
(data rate) × 448

frequency × Ncore
(11)

The parameter ”stage” for MCS-QRSIC is set 2 or 4 to make
the degree of parallelism larger than 16, that is, every core
is responsible of at least two paths. MCS-QRSIC has better
throughputs for QPSK, 16QAM and 64QAM in 4× 4 MIMO
detections. In general, the throughput is proportional to the
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Fig. 6: BER Performances of 12 × 12 MIMO detections for
(a) 16QAM and (b) 64QAM.

modulated bits when the MIMO dimension is fixed.

5. CONCLUSION

This paper presents a 4×4/8×8/12×12 configurable MIMO
detector on TI TMS320C6678 multi-core DSP processor. An
Eigen-decomposition-based method explores the intrinsic de-
gree of parallelism of MIMO detections algorithms and al-
locates operations to the DSP cores. Because of the effi-
cient allocation of the MIMO detection algorithms, the ex-
periment results shows the better throughput and detection
performances compared to the recent works in the literature.
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