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ABSTRACT
Dynamic dataflow models for their expressiveness prop-

erties have shown to represent more adequate and attractive
solutions for describing state of the art signal processing ap-
plications. However, they are known to present potential run-
time penalties when implementations are obtained by map-
ping and scheduling a dataflow network partition on a pro-
cessing unit. In general terms, a completely static scheduling
at compile-time of dynamic dataflow programs remains an
unsolved problem. Several approaches for the composition
of actors are promising approach that can significantly reduce
the potential penalty of run-time scheduling thus increasing
the overall performance of the system. This paper presents
static and quasi-static composition techniques that results in a
reduction of the portion of dynamic dataflow networks, by ap-
plying appropriate transformations to network partitions that
after a specific analysis demonstrate to possess a predictable
behaviour. Some experiments based on a video processing ap-
plication ported on several system-on-chips show the achiev-
able speedup corresponding to the reduction of the number of
run-time scheduling decisions.

Index Terms— Dataflow Process Network, Actor Com-
position, Static and Quasi-Static Scheduling

1. INTRODUCTION

Dataflow programming models have a rich history dating
back to at least the early 1970s, including seminal work
by Dennis [1] and Kahn [2]. For the purpose of this work, a
dataflow program is a directed graph in which nodes represent
computational units (called actors), while edges represent
connections between actors used to communicate sequences
of data packets (tokens). Several variations of this kind of
dataflow model have been introduced in literature [2, 3, 4, 5],
often referred to as different dataflow models of computation
(MoC). They differ in the kind of actor behaviour and they
permit to use different techniques for the scheduling of the
actor execution, which results in different trade-offs between
expressiveness and implementation efficiency. One common
property across all these dataflow models is that individual

actors encapsulate their own state, and thus do not share
memory with one another. Instead, actors communicate with
each other exclusively by sending and receiving tokens along
the channels connecting them. The resulting absence of race
conditions makes the behaviour of dataflow programs more
robust to different execution policies, whether those be truly
parallel or some interleaving of the individual actors.

Dynamic behaviors appears in most of stream processing
applications since some decisions must be done at run-time
when the operations to be performed on the data stream de-
pend on the information carried by the data itself. For in-
stance, deciding whether an intra type or inter type of video
processing has to be applied to incoming data is an example
of such kind of run-time decisions that can not be avoided.
Dynamic dataflow models are sufficiently expressive to natu-
rally model such kind of applications and this property is one
of the main reasons for which they are widely used. However,
dynamic dataflow requires a dynamic scheduler, that takes de-
cision at run-time to schedule the appropriate execution of
actor. Hence, a significant unnecessary overhead can be po-
tentially added during execution.

In the paper, several techniques capable of reducing the
dynamism of dataflow program executions, based on static
analysis and abstract interpretation of dataflow networks are
presented. Those techniques are applied to an MPEG-4 Part2
decoder implemented on different system-on-chips platforms
that show the speedup achievable when reducing the number
of unnecessary run-time decisions.

2. PROCESS NETWORKS

The developments and results presented in this paper are
related to the dataflow variant of Kahn process network
(KPN) [2] named dataflow process network (DPN) [5]. KPN
is a well-known model widely used for describing digital
signal processing systems. By contrast with KPN, where
processes (actors) represent continuous mapping from input
sequences to output sequences, DPN specifies processes as
a sequences of discrete computational steps, called firings.
In each of such step, an actor may consume a finite number
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of input tokens, produce a finite number of output tokens,
and modify its internal state, if it has any. The behaviour of
a DPN actor is specified as a pair of firing rule and firing.
The firing rule determines when the actor may fire, by de-
scribing the input sequences and state that need to be present
for the actor to be able to make a step, i.e. for it to be en-
abled. The firing determines, for each input a sequence/state
combination for which the actor is enabled according to the
firing rule, the output tokens produced in that step and, if
applicable, the new actor state. In general, an actor may be
non-deterministic, which means that the firing function may
yield more than one combination of output and next state for
any given enabled actor.

The CAL actor language [6] is a formal programming lan-
guage capable of implementing DPN actors semantic. Each
actor is defined by a set of actions where each action captures
a part of the firing rule along with the part of the firing that
pertains to the input/state combinations enabled by that par-
tial rule. An action is enabled according to its input patterns
and guard expressions. Input patterns define the amount of
data that are required on the input sequences, whereas guards
are boolean expressions on the current state and/or on input
sequences that need to be satisfied for enabling the execution
of an action.

3. ACTOR COMPOSITION: THE SCHEDULING
PROBLEM

Various compilers for Cal language targeting parallel plat-
forms (multicore, many-core and FPGA) are available and
have shown to be well adapted to generate implementations
for massively parallel platforms such as FPGAs [7]. In such
scenario, the degree of parallelism is assumed to be very high
and a one-to-one mapping of each individual actor is per-
formed, hence a computational unit is created for each ac-
tor. However, one-to-one mapping from actors to processing
units is neither possible nor appropriate in most of the cases.
In other words, the potential parallelism of applications is in
general much higher than the available parallelism provided
by platforms, therefore actors need to share the same process-
ing unit. For this reason, a scheduler is responsible to decide
at run-time which actor to fire at each step and the firing se-
quence can only be determined dynamically. However, some
DPN actors may belong to more restricted MoCs. Exam-
ples of more restrictive dataflow MoCs include synchronous
dataflow (SDF) [3], cycle-static dataflow (CSDF) [4], where
the scheduling decision can be done at compile-time. Know-
ing that, it is possible to reduce the dynamic scheduling over-
head introduced by DPN by gathering together actors that be-
long to more restricted MoCs. This operation is known as
actor composition. Actor composition is the process of trans-
forming a network of actors that belong to a given MoC into
a composite actor, without affecting the global processing se-
mantics.

Statically schedulable MoCs (static MoCs for short) have
the nice property that they have minimal run-time overhead
as all scheduling decisions can be done at compile-time [3].
SDF and CSDF are two well-known classes of static MoCs.
SDF is a special case of DPN where firing rules have the same
tokens rate. CSDF relaxes the SDF in that it can have fir-
ing rules with different token rates, with the constraint that
its inner firing sequence is cyclic. Static actors (SDF and
CSDF) have predictable behaviour, the scheduler executes re-
peatedly the firing sequence, hence it does not have to check
any conditions at runtime. SDF is not as expressive as DPN
and may not be able to describe some processing behaviours
needed in common signal processing applications. For exam-
ple a video decoder needs to decode several different types
of blocks, each requiring a slightly different set of computa-
tions and schedules. The schedule selection can only be done
at run-time based on information carried by the video data
stream itself.

For actors that are not statically schedulable, quasi-static
(or piecewise static) scheduling methods can be used to derive
schedules for actor composition. With quasi-static schedul-
ing, the idea is to make most of the scheduling decisions at
compile-time while leaving only some necessary scheduling
decision for run-time. The key conditions that make that pos-
sible must be identified while other redundant conditions are
removed to create static schedules. The result is a set of condi-
tions associated to static schedules (lists of action firings) and
in some cases a state machine to describe possible scheduling
states of the composed actor. Quasi-static scheduling is typ-
ically needed when the scheduling of actors does not strictly
depend on token rates but also on the value of input tokens
and state variables. Such actors are not by them selves stati-
cally schedulable as most of the actors are guarded by, from
the actors point of view, unknown information. Another sit-
uation is when it is not possible to complete one actor at the
time but the execution of the actors needs to be interleaved
to complete. Interleaving is typically needed when there are
feedback loops in the dataflow network. The idea pursued
here is that when a network partition including several actors
is analyzed as a whole, many of the checks required to execute
a single actor becomes redundant.

4. RELATED WORKS AND THE PROPOSED
SCHEDULING APPROACH

In the paper, we proposed two techniques for the static and the
quasi-static scheduling of dynamic dataflow programs. There
is an abundant literature related to the compile-time schedul-
ing of static dataflow MoCs. The challenge beyond that, is
how to apply such techniques to dynamic MoC. Several ap-
proaches have been proposed to statically schedule CAL pro-
grams [8]. In our approach, a first assumption is that a classifi-
cation of actors is first applied on the input dataflow network,
hence actors are classified according to the MoCs they belong
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to. We used the classifier proposed by [9, 10] to this end.
Then, we took care about the fact that composition of static
actors is not always possible, hence composing two connected
actors may introduce deadlock. However, sufficient condi-
tions that guarantees deadlock-freedom have been presented
in [11]. For that purpose, we proposed a pairwise clustering
method to compose static actors that construct the compile-
time firing sequence, based on token rates information [3] and
the composing conditions [11]. The process can be described
as follow: an actor is randomly selected, if it has static MoC,
every connected actor is tested for composition. An Actor is
merged if it is also static and if the conditions are met, oth-
erwise it is rejected. Note that the algorithm is greedy, hence
it does not always output the optimal set of actors that are
composable (by means of given objective metrics).

For the actors which are not static, quasi-static scheduling
methods can be used to compose the actors. Some approaches
for deriving quasi-static schedules for CAL programs have
been proposed [12, 8, 13]. In general terms, these methods
identify statically schedulable portions of data flow networks
where the actors are not completely statically schedulable.
Another approach proposed by Janneck in [14], uses a ma-
chine model to describe the actors such that these can be com-
posed.

In the approach in [15, 13], a partition of actors is ana-
lyzed and the possible inputs (scenarios) are used to identify
deterministic schedules that link recurring network execution
states. Therefore, the only dynamic operation of the scheduler
remains the guard evaluations between states linked by the
obtained deterministic schedules. A model checker is used
to find paths (schedules) between reachable states where a
run-time scheduling decision is needed. The scheduler of a
composed actor will simply choose a schedule, consisting of
a sequence of actions, based on a condition which is derived
from the guards of the original actors.

5. EXPERIMENTS

Figure 1(a) depicts a dataflow program implementing an
MPEG-4 Part 2 decoder. It contains 13 actors that corre-
sponds to the entropy decoding (syntax parser and the vari-
able length decoder), residual decoding (AC-DC predictions,
inverse scan, inverse quantization and IDCT) and the motion
compensation (framebuffer, interpolation and residual error
addition). The source (S) reads the bitstream while the sink
(D) displays the decoded video. The color of actors represents
the MoC they belong to, viz. SDF/CSDF in green, QSDF in
yellow and DPN in red. The source and sink are classified
manually as DPN since they are I/O actors that should not be
composed.

Composition is shown in Fig. 1(b). The residual decoding
includes 3 SDF and 1 CSDF actors. They are assembled into
a composite CSDF actor (since SDF is a particular CSDF).
On the other side, the motion compensation includes 2 QSDF

QCIF 720p 1080p
Raspberry Pi ARM11 @ 800 MHz - minimal FIFOs
orig 59.8± 0.1 1.85± 0.01 0.82± 0.01
qsdf 65.0± 0.1 2.16± 0.01 0.93± 0.01
sdf 65.7± 0.1 2.11± 0.01 0.91± 0.01
both 68.0± 0.1 2.24± 0.01 1.01± 0.01

speedup 13.7% 21.0% 23.2%
Raspberry Pi ARM11 @ 800 MHz - 4k FIFOs
orig 62.9± 0.1 2.17± 0.02 0.94± 0.02
qsdf 85.7± 0.1 2.85± 0.02 1.24± 0.02
sdf 96.4± 0.1 3.19± 0.01 1.39± 0.02
both 92.2± 0.1 3.04± 0.02 1.39± 0.02

speedup 53.2% 40.0% 47.9%
Pandaboard ARM Cortex-A9 @ 1.2 GHz - minimal FIFOs
orig 256± 1 8.38± 0.03 3.68± 0.05
qsdf 275± 1 9.58± 0.03 4.18± 0.06
sdf 259± 1 8.75± 0.03 3.77± 0.05
both 286± 1 9.86± 0.05 4.34± 0.06

speedup 11.7% 17.7% 17.9%
Pandaboard ARM Cortex-A9 @ 1.2 GHz - 4k FIFOs
orig 167± 1 5.77± 0.03 2.49± 0.03
qsdf 190± 1 5.56± 0.03 2.84± 0.03
sdf 196± 1 6.70± 0.03 2.91± 0.03
both 199± 1 6.81± 0.03 2.96± 0.03

speedup 19.2% 18.0% 18.9%
Intel Xeon E5 2620 @ 2 GHz 4 - minimal FIFOs
orig 1068± 1 35.4± 0.1 15.4± 0.2
qsdf 1183± 1 40.3± 0.1 17.7± 0.2
sdf 1090± 1 35.9± 0.1 15.7± 0.2
both 1233± 1 41.7± 0.1 18.1± 0.2

speedup 15.5% 17.8% 17.5%
Intel Xeon E5 2620 @ 2 GHz - 4k FIFOs
orig 1328± 1 45.3± 0.1 19.8± 0.2
qsdf 1548± 1 51.8± 0.1 22.6± 0.3
sdf 1548± 1 50.8± 0.1 22.4± 0.2
both 1574± 1 52.5± 0.1 23.1± 0.3

speedup 18.5% 15.9% 16.7%

Table 1. Experimental Results showing the frame rate (fps) of
the different configurations and the confidence interval for a
99% confidence level. The speedup from the original decoder
to the fastest decoder with composed actors is given for each
platform and video sequence.

and 1 SDF actors, hence a QSDF composite actor is inserted.

5.1. Experimental Setup

The purpose of the experiments is to determine the impact of
the static and quasi-static compositions on the performance of
the overall video decoder, for this reason the experiments are
run with 1) the original decoder, 2) the motion compensation
network composed as QSDF, 3) the residual coding network
composed as CSDF and 4) both networks composed as QSDF
and CSDF respectively.

The experiments are run on three platforms with rather
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Fig. 1. Dataflow description of the MPEG-4 part2 Simple Profile, for the sake of clarity the multiple channels between connected
actors are not represented.

different properties regarding cache memories and instruction-
sets. The results from different architectures are not interest-
ing to be compared in absolute terms, instead we can compare
the impact of different compositions on the architectures. For
the set of decoders and platforms we use a set of videos of
various size which affects the memory usage of the decoders
by requiring different size of the frame buffer. The memory
usage is further altered by running the decoders both with
large FIFOs (4k) and minimal FIFOs sizes.

For the experiments, the three platforms run Linux (Rasp-
bian and Ubuntu) and the code generated from the CAL pro-
gram is compiled for the three platforms using gcc 4.6.3. The
decoders are instrumented with code to collect statistics about
the decoding progress. With a five second interval the decoder
records the number of frames coded since the last interval, af-
ter running the decoder for several minutes when at least 30
readings has been collected, these are used to calculate the
average frame rate and the confidence interval (for the aver-
age frame rate during five seconds) according to the standard
normal distribution.

5.2. Experiment Results

The performance of the programs generated from CAL is
affected by both the number of conditional branches in the
scheduler and from how the schedules affect the cache be-
haviour. On the one hand, our goal is to have long static
schedules, where a single condition enables a sequence of
many action firings and by this minimizes the number of
conditions the program scheduler must execute. At the same
time, we do not want the (composed) actors to become too
large for the instruction cache. On the other hand, large FI-
FOs, increase the number of times the same (composed) actor
is executed in sequence, thus improving the instruction cache,
but also increase the memory usage of the decoder.

For these reasons, the performance, depending on actor
composition and scheduling, can be very different on different
architectures. To get a more complete picture of the impact of
actor composition on the performance of a CAL program, we
run the experiments of three platforms with rather different
memory and cache sizes and structure. On the Raspberry Pi
the L2 cache is not used by the ARM core making the L1
cache the Last Level Cache (LLC), the Pandaboard has a 1
MB L2 cache as LLC and the Xeon has a 15 MB L3 cache

as LLC. Also the instruction sets are different for the three
processors, while we obviously for the Xeon used x86, the
two ARM processors support different instruction sets; for the
ARMv7 of the Pandaboard we used the more dense Thumb-2
instruction set while for the ARMv6 of the Raspberry Pi we
used the ARM instruction set.

In the results in Table 1 we can see how the performance
of the decoder, in this case with respect to the frame rate,
is improved by the static and quasi-static scheduling of the
residual coding and motion compensation respectively and
the combination of these. The table shows that composition
of actors sharing a processor in most cases improved the per-
formance of the program, the static composition always im-
proved performance and the quasi-static in every but one case
where static composition alone performed better.

Another interesting detail is that, for the Pandaboard, the
performance was degraded with large buffers while the other
platforms experienced improved performance. A possible ex-
planation for this is that, while each of the processors have
equally large L1 caches, beyond L1 the Raspberry Pi has no
cache and the Xeon has much larger cache, as a consequence
the increased memory usage has a large impact on the Pand-
aboards L2 cache while on the other platforms the impact is
minimal.

While eliminating run-time scheduling decisions im-
proves the performance of the decoder, considering the plat-
form, in the composition and scheduling of actors, would
enable new possibilities to improve the performance of the
dataflow program. A possible alternative to searching for as
large as possible static or quasi-static compositions, would
then be to search for compositions and schedules that makes
the best use of the cache.

6. CONCLUSIONS

The paper presented methods for static and quasi-static com-
position of dynamic dataflow programs. Experiments show
that the static and quasi-static composition techniques reduce
the run-time overhead of the target application and conse-
quently increase its run-time performance. Those methods
used jointly can significantly improve the performance of dy-
namic dataflow programs, closing up the gap with existing
optimized software implementations.
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