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ABSTRACT
Virtually Shared Scratch-Pad Memory (VS-SPM) with multiple
memory banks can be used as on-chip memory on multiprocessor
systems-on-chips (MPSoCs) to close the speed gap between fast
processors and slow memories. By exploring the parallelism of
computation tasks on processors and concurrent data accesses on
each SPM, the results of task assignment and data allocation can sig-
nificantly affect the overall performance of a schedule. In this paper,
we propose ILP formulations for solving the problem of task as-
signment and scheduling on MPSoCs with multi-bank VS-SPM. We
also propose a polynomial-time algorithm, the Potential Remote Ac-
cess Prediction (PRAP) algorithm, to generate near-optimal results
efficiently. The experimental results demonstrate the effectiveness
of our technique.

Index Terms— Task Assignment, Data Allocation, Scheduling,
MPSoC, Virtually Shared SPM

1. INTRODUCTION

Many modern embedded systems, including high-performance
digital signal processing systems, are designed as multiproces-
sor System-on-Chip (MPSoC). Scratch-Pad Memory (SPM), a
Software-controlled on-chip memory, has been considered as an al-
ternative to cache due to its small die area and energy efficiency [1].
In SPM, data transfer between SPMs and off-chip memory is explic-
itly managed by software [2], which gives more control of memory
accesses to software. Examples of MPSoCs using SPMs as their
on-chip memories include Texas Instruments TMS370Cx [3] and
Motorola 68HC12 [4]. To further improving the overall system per-
formance, many MPSoCs are equipped multiple SPM banks. All the
SPM banks can be accessed in parallel. Providing the increasing par-
allelism on multiple SPM banks, the process of task assignment and
data allocation becomes very critical in fully utilizing the advantage
of this kind of architecture and generating compact schedules.

In this paper, we study the problem of task assignment and
scheduling along with data allocation on MPSoC with virtually
shared SPM [5]. In our target architecture, each processor is at-
tached to a local on-chip SPM with multiple banks that can be
accessed concurrently. Each processor is able to access all the SPMs
in MPSoC.

There have been many research efforts on solving the problem
of data allocation and task assignment for performance improvement
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[6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. However, most
of their target architectures are different from this paper. Zhang et
al. [21] proposed two variable partitioning heuristics based on an
initial schedule and presented a loop pipeline scheduling algorithm
to improve overall throughput. The Virtually Shared Scratch-Pad
Memory (VS-SPM) architecture in their paper has a single bank
SPM on each core. Hence, concurrent data accesses are not al-
lowed on one SPM. Zhuge et al. [22] explored variable partitioning
and scheduling on multiple-memory-module architectures and pro-
posed a variable independence graph (VIG) model for approaching
the variable partitioning problem. Their research work focused on
instruction-level scheduling. Zhuge et al. [23] proposed an optimal
data allocation for scalar variables on a single CPU with multiple
memory types. Zhang et al. [24] proposed a dynamic programming
approach to allocate the scalar and array variables for embedded sys-
tems with multiple types of memory units. Their approaches are
not applicable to the architecture which allows concurrent data ac-
cesses. In this paper, we study the problem of minimizing execution
time during task assignment and task-level scheduling while taking
advantage of parallel memory accesses on VS-SPM through data al-
location.

In this paper, we first propose Integer Linear Programming (ILP)
formulations for task assignment and scheduling on MPSoC with
multi-bank VS-SPM. The ILP method is able to obtain the optimal
solution with minimum schedule length. We also propose an ef-
ficient algorithm, the Potential Remote Access Prediction (PRAP)
algorithm for solving the task assignment and scheduling problem
in polynomial time. The PRAP algorithm generates task assign-
ment and data allocation for MPSoC with multi-bank VS-SPM so
that the concurrency of memory accesses can be fully utilized dur-
ing scheduling. We evaluate the effectiveness of the PRAP algo-
rithm by comparing schedule lengths generated by three different
techniques: the High Access Frequency First (HAFF) algorithm pro-
posed in [21], the ILP method and our PRAP algorithm. Experi-
mental results show that the PRAP algorithm achieves an improve-
ment of 25.9% on average for all the benchmarks compared with the
HAFF algorithm.

The main contributions of this paper include:

• We develop ILP formulations to produce the optimal solution
for the task assignment and scheduling problem on MPSoCs
with multi-bank VS-SPM.

• We design a polynomial-time algorithm, the PRAP algorithm,
to explore the opportunity of concurrent memory accesses
among SPMs and generate near-optimal schedule lengths ef-
ficiently.
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The rest of our paper is organized as follows: hardware and soft-
ware models are introduced in Section 2. A motivational example is
presented in Section 3 to illustrate the basic ideas. The ILP formu-
lations are presented in Section 4. The PRAP algorithm is presented
in Section 5. The experimental results are presented in Section 6.
Section 7 concludes the whole paper.

2. BASIC MODEL

In this section, we first introduce the MPSoC with multi-bank VS-
SPM architecture. Then, the Memory-access Date Flow Graph
(MDFG) model and concepts are presented.
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Fig. 1. Architectural model MPSoC with multi-bank VS-SPM.

The target MPSoC architecture is shown in Fig. 1. There are
multiple processors on a single chip. Each processor is equipped
with an SPM, which serves as local on-chip memory. Each processor
can access its local SPM and all the other SPMs. If a processor
accesses its own SPM, we call it a Local Access. The access latency
on a local SPM is quite small. If a processor accesses an SPM in
other cores, we call it a Remote Access. It incurs a larger latency
than local access latency. If a processor accesses off-chip memory,
we call it an Off-chip Access. It causes the largest access latency. In
this work, we assume that off-chip access latency can be hidden by
data prefetching and reasonable regional program fetching. Please
note that the SPMs used in our architectural model are multi-bank
SPMs. Hence, multiple data accesses can be performed in parallel
on each SPM.

The target Architecture MPSoC T is a set of M cores {C1, C2,
. . . , Cm}. Each core is composed of a SPM and a processor. The
concurrent access number MA denotes the number of data accesses
that can be processed concurrently on a SPM.

In this paper, we use Memory-access Data Flow Graph (MDFG)
to model tasks and memory accesses. In our MDFG model, there
are two types of nodes. One type of nodes represents computation
tasks. The other type represents memory access operations. Each
task needs to read data before execution and write data to SPMs after
execution. The MDFG is defined as follows:

Definition 2.1. A MDFG G = < V1, V2, E, t, var > is a node-
weighted directed graph, where V1 represents a set of computation
tasks, V2 represents a set of memory access operations, E ⊆ V ×V ,
where V = V1

∪
V2, is an edge set. Each edge (e : u → v) ∈ E

represents precedence relation between nodes u, v ∈ V , t(u) is a
function represents the computation time of a task u ∈ V1, var(u)
represents a variable accessed by a memory operation u ∈ V2.

Given a MDFG G and target architecture configurations, the
goal of task assignment on MPSoC is to find appropriate allocation
for both tasks and data on a set of cores and SPMs such that the
schedule length can be minimized. To achieve this, our proposed
methods need to solve the following problems:

• Task Assignment. A legal assignment for computation tasks
should obey both precedence relations and resource con-
straints.

• Data Allocation. Data are allocated to SPMs so that memory
access cost can be minimized. We only keep one copy of data
in the system.

• Scheduling. A schedule determines the start time of compu-
tation tasks and memory access operations.

3. MOTIVATIONAL EXAMPLE

In this section, we illustrate the main technique proposed in this pa-
per with a motivational example.
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Fig. 2. Motivational example.

Fig. 2(a) shows an example MDFG. The computation tasks are
donated by shaded circles. The memory access operations are de-
noted by triangle nodes. Fig. 2(b) shows the execution time and
variable accesses for each computation task. For example, task 2
reads variables “A” and “C” before execution. It writes “C” back to
SPM after the execution. In this example, we assume that the com-
putation latency of task 2 is 5 clock cycles. We also assume that a
local SPM access takes 1 clock cycle and a remote access takes 10
clock cycles. The target architecture for this example has two cores.
Each core has one on-chip SPM of size 3 data units. The number of
concurrent accesses allowed on each SPM is 2.
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(b) The schedule generated
by PRAP algorithm.
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Fig. 3. Compare schedules generated by various methods.

Fig. 3(a) shows a schedule generated by list scheduling algo-
rithm without considering task assignment and data allocation. The
memory access operations are denoted by whites bars. The compu-
tation tasks are denoted by shaded bars. Schedules on two cores are
separated by dotted line. Data allocated on two cores are shown at
the end of each schedule. The schedule length is 31 clock cycles.
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Fig. 3(b) shows an improved schedule generated by the proposed
PRAP algorithm. In the PRAP algorithm, we try to maximize the
parallelism of computation tasks and data accesses on all the SPMs.
At the same time, the algorithm minimizes the number of remote
accesses. By assigning computation tasks 1 and 2 and variables A,
B and C on core C1 , a remote access of variable “A” for task 2
can be eliminated. By assigning computation tasks 3, 4 and 5 and
variables D, E and F on core C2 , remote accesses of variable “D”
for task 4 and variable “E” for task 5 can be eliminated. As a result,
the schedule length is reduced from 31 to 17 clock cycles.

Fig. 3(c) shows the optimal schedule generated by ILP formu-
lations. It generates a schedule length of 15 clock cycles which is
very close to the schedule length obtained by the proposed PRAP
algorithm.

4. ILP MODEL

In this section, we propose ILP formulations for the task assignment
and scheduling problem on MPSoC. First, we introduce notations
necessary for constructing the ILP formulations as shown in Table 1.
Then, we formally define the ILP formulations.

Table 1. Notations used in the ILP formulations.
Notation Definition
xu,j,k = 1 if and only if a computation task or memory

operation u starts to execute on core k at step j.
y′u,j,k = 1 if and only if there is a memory access operation u

is being executed on SPM k at step j.
z′u,j,k = 1 if and only if there is a computation task u is being

executed on processor k at step j.
mh,k = 1 if and only if data variable h is allocated to SPM k.
N1 Number of computation tasks
N2 Number of memory access operations
S Upper bound of execution time which can be represented

by steps.
M Number of processors or SPMs
Nd Number of data in G
MSizek Size of SPM k
Sizeh Size of data h

Task Mapping Constraint Each node in a given MDFG is exe-
cuted exactly once at any time, as shown in equation (1).

S∑
j=1

M∑
k=1

xu,j,k = 1,∀u ∈ V1 ∪ V2. (1)

Data Allocation Constraints During data allocation, we need
to consider three constraints. First, each data can be allocated to one
SPM, as shown in equation (2).

M∑
k=1

mh,k = 1, ∀h ∈ [1, Nd]. (2)

Second, the total size of data allocated to an SPM should not exceed
the size of SPM.

Nd∑
h=1

Sizeh ×mh,k ≤MSizek, ∀k ∈ [1,M ]. (3)

Third, data should be allocated to the same core for corresponding
memory access operations.

M∑
k=1

k ×mvar(u),k =

S∑
j=1

M∑
k=1

k × xu,j,k, ∀u ∈ V2. (4)

Dependency Constraint A dependency edge e(u, v) ∈ E indi-
cates that node v cannot be executed until node u is finished, where
u, v ∈ V1 ∪ V2.

S∑
j=1

M∑
k=1

j × xu,j,k + t(u) ≤
S∑

j=1

M∑
k=1

j × xv,j,k,

∀e(u, v) ∈ E, ∀u, v ∈ V1 ∪ V2.

(5)

In equation (5), t(u) represents the execution time of a node u.
For a computation task, the execution latency is given in MDFG. For
a data access operation, the execution time depends on the distance
of data location. If a computation task u and a data h accessed by u
are assigned to the same processor, the corresponding data access is
a local access. Otherwise, it is a remote access.

Resource Constraint There is only one computation task can
be executed on a processor k at any time, as shown in equation (6).

N1∑
u=1

z′u,j,k ≤ 1,∀j ∈ [1, S],∀k ∈ [1,M ]. (6)

There are up to MA concurrent data accesses can be executed on an
SPM at any time.

N2∑
u=1

y′
u,j,k ≤MA, ∀j ∈ [1, S], ∀k ∈ [1,M ]. (7)

Objective Function. The objective function can be formulated
as follows:

min
S∑

j=1

M∑
k=1

j × xu0,j,k. (8)

where u0 is a dummy node added to MDFG to compute the finish
time of the whole graph. We also added one outgoing edge from
each node with no child to u0.

5. THE POTENTIAL REMOTE ACCESS PREDICTION
(PRAP) ALGORITHM

In this section, we propose the Potential Remote Access Predic-
tion(PRAP) algorithm. It computes task assignment and data alloca-
tion for a given MDFG by exploring opportunity of parallelization
of data accesses and tasks to generate a compact schedule in poly-
nomial time.

Algorithm 5.1 shows the procedure of PRAP algorithm. Ini-
tially, we assume that all the variables are located in main memory
and there is no task assigned to any core. We build a priority queue
of computation tasks in a given MDFG using topological sort.An ar-
ray Available(n) is used to record the available time slots on core
n for task assignment. A matrix Freq[n][d] is used to record data
access frequencies for each variable d allocated on core n.

The PRAP algorithm tries to maximize the parallelism of com-
putation tasks and data accesses while considering the cost of remote
data accesses. In each iteration from line 8 to line 17, the algorithm
tries to assign a computation task qα to a core n. Meanwhile, it tries
to allocate variables accessed by task qα. If a variable is already
located in core n, task qα can access the variable on a local SPM.
Otherwise, the algorithm tries to allocate the variable to the local
SPM whenever the number of concurrent data accesses on an SPM
is allowed by the architecture. Line 13 to line 16 compare the finish
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Algorithm 5.1 Potential Remote Access Prediction (PRAP)
Require: (1) A graph model MDFG G =< V1, V2, E, t, var >;

(2) Data access frequency for each task; (3) Architectural model
T .

Ensure: Data allocation results for all the variables. A schedule of
tasks and data accesses on all the cores.

1: Build a priority queue Q of computation tasks.
2: Initialize Available(n)← 0.
3: Initialize a M ×Nd matrix Freq[n][d]← 0.
4: while (Q) do
5: qα ← Dequeue(Q);
6: Est← The earliest executable time of qα;
7: Core id ← ID of a randomly picked core, 1 ≤ Core id ≤

n;
8: for core n do
9: Min←∞;

10: Num(n) ← The number of data variables that have been
located on core n for task qα before it is assigned to core
n.

11: Rp(n)← The total number of remote accesses for task qα
assuming qα is assigned to core n.

12: St(n)← The earliest start time of qα on core n;
13: if ((Min > St(n) + Lr × Rp(n))or(Min = St(n) +

Lr ×Rp(n) and Num(n) > Num(Core id))) then
14: Min← St(n) + Lr ×Rp(n);
15: Core id← n;
16: end if
17: end for
18: ass(qα)← Core id;
19: Update array Available and matrix Freq.
20: end while
21: Decide data allocation on each SPM for variables with the high-

est access frequency in Freq considering the size of SPM.
22: Sch← Conduct list Scheduling.
23: return Sch and a map of data allocation;

time of task qα on each core and update the value of Min with the
earliest finish time. Line 18 assigns computation task qα to a core
where it can be finished at the earliest time. Line 21 decides vari-
able location based on the size of each SPM. If there’s no enough
space on SPM to store all the variables, the algorithm allocates the
variables with the lowest access frequency to main memory.

6. EXPERIMENTS

The effectiveness of PRAP algorithm is evaluated by a set of DSP-
stone benchmarks. The experiments are conducted on two simulated
MPSoCs with multi-bank SPMs allowing concurrent accesses. Each
simulated MPSoC has two cores. One of them allows 2 concur-
rent accesses on SPM. The other allows 4 concurrent accesses on
SPM. We run our simulator on a PC with a Intel(R) Core(TM) i5-
2400 CPU which runs at 3.10 GHz and has 4GB of main memory.
We implement the ILP formulations in Lingo to generate optimal
results. However, the ILP cannot finish within reasonable time for
some benchmarks such as ”elf” filter.

Table 2 shows the experimental results of various schedule
lengths produced by three different methods on the architecture

Table 2. Schedule lengths on a 2-core MPSoC with 2-bank SPMs.
HAFF ILP PRAP

Benchmark SL SL Imp SL Imp
motiv 45 30 33.3% 30 33.3%

iir 23 12 47.8% 15 34.8%
deq 57 45 21.1% 49 14.0%

diff-clt 40 15 62.5% 30 25.0%
allpole 30 17 43.3% 22 26.7%
rls-lat 61 - - 39 36.1%
volt 84 - - 60 28.6%
elf 198 - - 181 8.6%

Ave. Imp - - 41.6% - 25.9%

with 2 cores. Each core is equipped with a 2-bank SPM allowing
2 concurrent data accesses. They are the HAFF algorithm pro-
posed in [21], the ILP method, and our PRAP algorithm. The “SL”
columns show the number of clock cycles of a schedule generated
by different methods. The “Imp” columns show the reduction rate
of schedule length obtained by ILP or the PRAP algorithm com-
pared with the HAFF algorithm. ILP cannot find optimal solutions
for most of the benchmarks in several hours. The PRAP algorithm
is able to generate schedules efficiently for all the benchmarks. It
reduces schedule length by 25.9% on average. For the ”rls-lat” filter,
which has 19 tasks and 11 data items, the PRAP algorithm reduces
the schedule length by 36.1%.

Table 3. Schedule lengths on a 2-core MPSoC with 4-bank SPMs.
HAFF ILP PRAP

Benchmark SL SL Imp SL Imp
motiv 53 29 45.3% 29 45.3%

iir 42 12 71.4% 15 64.3%
deq 57 41 28.1% 49 14.0%

diff-clt 30 15 50.0% 26 13.3%
allpole 30 17 43.3% 22 26.7%
rls-lat 49 - - 39 20.4%
volt 64 - - 56 12.5%
elf 195 - - 158 19.0%

Ave. Imp - - 47.6% - 26.9%

Table 3 shows the experimental results of various schedule
lengths produced by three different methods on the architecture with
2 cores and 4-bank SPMs providing 4 concurrent data accesses.
On this architecture, the PRAP algorithm is able to utilize 4 par-
allel data accesses as possible and generate compact schedules. It
achieves a 26.9% reduction of schedule length on average over all
the benchmarks.

Compared with the HAFF algorithm, our PRAP algorithm is
more effective on task assignment and scheduling for MPSoCs with
multi-bank SPMs providing concurrent data accesses on each core.
The reason is that the PRAP algorithm considers effects of both task
assignment and data allocation at the same time. It tries to maximize
the parallelism of tasks and data accesses while considering the cost
of data accesses on remote SPM.

7. CONCLUSION

In this paper, we study the problem of task assignment and schedul-
ing on MPSoC with virtually shared multi-bank SPMs allowing con-
current data accesses for each core. We build ILP formulations to
obtain the optimal schedule length. We also propose an efficient al-
gorithm, the Potential Remote Access Prediction(PRAP) algorithm,
to generate near-optimal results in polynomial time. The experimen-
tal results show that the PRAP algorithm is more effective than the
HAFF algorithm in exploring parallelism in simulated MPSoC ar-
chitectures and generating compact schedules.
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