
DATA MEMORY OPTIMIZATION IN LTE DOWNLINK
Namita Sharma1, Tom Vander Aa2, Prashant Agrawal2, Praveen Raghavan2, Preeti Ranjan Panda1, and Francky Catthoor2

1Indian Institute of Technology Delhi, New Delhi, India
2IMEC, Leuven, Belgium

ABSTRACT

Optimizations related to memory accesses and data storage make
a significant difference to the performance and energy of a wide
range of data-intensive applications. Such strategies need to evolve
with modern SoC and processor architectures, which lead to new
optimization opportunities. In this paper, we focus on data memory
optimization for LTE downlink receiver as this is a data- and
computation-intensive part of the LTE application with tight energy
and latency constraints. We study the data dependencies globally
and conclude that by providing data samples from the antennas in
interleaved form at the FFT input, we can achieve 7-15% reduction
in memory access energy over an optimized implementation without
any performance overhead.
Index Terms — Data Layout, Memory Optimization, LTE

1. INTRODUCTION

Data and memory optimizations have been the topic of a significant
amount of recent research efforts because of the dominating role
of memory in a large class of data-intensive applications. LTE is
such a data-intensive standard for wireless communication with useful
applications in mobile phones and data terminals. LTE defines several
channel bandwidths: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz,
and 20 MHz [1]. The larger the bandwidth, the higher the channel
capacity, and the greater the number of available sub-carriers for
transmission. With the use of multiple antennas at both ends of the
communication system (MIMO technique) a linear increase in the
channel capacity can be obtained for the same bandwidth. Due to the
processing requirement for large number of sub-carriers, practical
system implementation of this standard are subject to data memory
organisation and access bottlenecks. We focus on the LTE MIMO
downlink receiver as it is the data-intensive and computation-intensive
part with tight energy and latency constraints. Some solutions for
energy and performance improvement at different stages of the
receiver have been proposed [2], [3].

Data layout optimizations aim to arrange data in memory with
the objective of improving system performance and energy through
means such as reduced memory access count or reduced cache misses.
Several more generic data layout techniques have been explored by
researchers at various levels in the memory hierarchy. But these are
not well matched to our context of LTE optimisations. In particular,
Cache partitioning [4], a layout technique for arrays, maps each
array to different cache partitions to reduce conflicts. Kulkarni et
al. [5] addressed the problem for cache miss reduction by evaluating
the tiling size for arrays and merging the arrays appropriately for
each loop nest. Memory Hierarchy Layer Assignment (MHLA), an
optimization methodology for data memory hierarchy [6], determines
for each data set an appropriate layer in the hierarchy and type
of memory (single/dual port) taking data re-use into account. The
strategy in [7] partitions the variables to Scratch Pad Memory and
DRAM in a way that interference among different variables is
minimized. To the best of our knowledge, no work has been presented
yet for an efficient data layout for LTE. And the cache-oriented

general techniques proposed earlier by researchers [8] do not find
a straightforward application in our context, where the target system
hardware consists of a coarse grained re-configurable array (CGRA)
of SIMD functional units and vector registers.

2. MOTIVATING EXAMPLE

We illustrate the motivation behind the data layout transformation
with the following example. Figure 1(a) shows a code snippet from
the Channel Estimation stage of the LTE application that involves
pilot extraction followed by product with constant conjugate pilots.
Here, arrays A and B correspond to the sample space of the two
antennas. Only a subset of these arrays is used in the data processing
block. Figure 1(b) shows the access pattern, with the accessed array
elements highlighted.

i n t k =0;
f o r (i =424; i <1624; i +=12) {
/∗ E x t r a c t i n g P i l o t Matr ix 1 ∗ /

S [k]=A[i +1]∗C0 ;
S [k +1]=A[i +2]∗C1 ;
S [k +2]=B[i +1]∗C2 ;
S [k +3]=B[i +2]∗C3 ;

/∗ E x t r a c t i n g P i l o t Matr ix 2 ∗ /
S [k +4]=A[i +7]∗C4 ;
S [k +5]=A[i +8]∗C5 ;
S [k +6]=B[i +7]∗C6 ;
S [k +7]=B[i +8]∗C7 ;
k=k +8;

}
(a) Example loop

(b) Array access pattern (Layout 1)

(c) Array access pattern with interleaving (Layout 2)

Fig. 1: Motivational example from LTE

For these data sets, Figure 1 shows two possible layouts.
Assuming that a vector register READ operation loads 4 consecutive
words from the data memory into the vector register, in Layout 1
(Figure 1(b) which is the normal array storage strategy), two vector
reads are required to load the elements for each pilot matrix. Here,
the loads bring along the irrelevant data also, including A[427],
A[428], etc. Layout 1 is conventionally chosen as the inputs and
outputs of the OFDM demodulation block are all in sequential order.
Consider Layout 2 shown in Figure 1(c) where elements of A and
B are stored in an interleaved manner. Here, only one memory
access per pilot matrix is required. Thus, a suitable layout in the
memory reduces the number of memory accesses. This creates an
important exploration problem, since the complexity increases if we
have multiple arrays that can be interleaved. The choices of the subset

2610978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

of arrays to be interleaved and the granularity of interleaving, have
to be comprehensively evaluated so as to produce energy-efficient
implementations without compromising on performance.

3. APPLICATION OVERVIEW

In this section, we explain the LTE application code structure with a
brief introduction to the channel configuration.

3.1. Basics and Terminology

A specific number of sub-carriers (Figure 2(a)) in the frequency
domain are allocated to possibly multiple users for a pre-determined
amount of time. The communication channel is thus configured along
both the time and frequency domains. Transmission is based on
frames of 10 ms duration. Each frame consists of 10 sub-frames that
are divided into 2 slots each as shown in Figure 2(a). Each slot is
made up of 6 to 7 OFDM symbols [1] depending on the cyclic prefix
length associated with them. A sub-frame is the smallest unit of time
allocated to a user. The channel bandwidth is divided into Physical
Resource Blocks (PRBs). Each PRB consists of 12 sub-carriers of 15
kHz bandwidth and is constant irrespective of the bandwidth under
consideration. Since their frequencies are mutually orthogonal, there
is no need for a guard frequency to avoid inter-channel interference.
Resource element is the smallest constituent of the resource grid and
represents one single sub-carrier for one symbol period. Number of
resource elements in a PRB is 12 × #OFDM symbols in a slot. In
order to facilitate carrier offset estimation, channel estimation and
timing synchronization, some of the resource elements are reserved
for the transmission of special reference symbols (pilots) according
to 3GPP standards and are not available for user data. Figure 2(b)
shows the pilot distribution for LTE 2x2 [9].

(a) Downlink Resource Grid (b) Pilot distribution for LTE 2x2

Fig. 2: Ref. elements distribution for channel BW=20 MHz

3.2. LTE Details

LTE 2x2 MIMO application has two antennas at the transmitter as
well as the receiver end. Pilots are positioned at symbols 0 and 4
in each slot (Figure 2(b)). Considering Symbol 0, sub-carriers at
positions 1 and 2 (A/B and C/D) in the frequency domain of PRBs
corresponding to both the antennas constitute one pilot matrix, while
those at positions 7 and 8 (E/F and G/H) constitute the second matrix.
Similarly, the pilot matrix elements for symbol 4 are positioned at 4, 5
and 10, 11 in the PRBs for the two antennas. Thus, we have two pilot
matrices associated with each of the pilot symbols 0 and 4. Figure 4
illustrates the complete application flow. The OFDM demodulation
step consists of the IQ CFO Compensation kernel followed by FFT
to move from time domain to the frequency domain. Output of FFT
goes to the Shuffle Carrier Pilot0/4 kernel for the pilot symbols 0/4

and to Shuffle Carrier for non-pilot symbols. These kernels separate
out the data and pilot carriers (for pilot symbols) from the dummy
sub-carriers both at the start and end of the band (424 on each side)
and the DC carrier. The Channel Estimation kernel computes the
channel estimate matrices (H matrices) and the rotational angles
based on pilot symbols. It does the preparation for interpolation
along the frequency domain in the Frequency Interpolation block.
Here, the H matrices for reference carriers are linearly interpolated
along the frequency domain to obtain H matrices for all the sub-
carriers corresponding to each PRB. The Pre-Scaling kernel does
a linear scaling of matrices by a computed pre-coding constant
matrix. Following this, QR decomposition method is used for matrix
inversion to compute the equalizing matrix in the Matrix Inversion
kernel. From the point of pilot extraction to the matrix inversion,
the flow is the same for both pilot symbols. After this, the LLR
block is executed where Log-Likelihood Ratios (LLR) are calculated
based on the inverse channel matrices of Symbol 0. The ∆ Inverse
computation block for Symbol 4 uses the inverse matrices of both
pilot symbols to prepare for interpolation along the time domain.
Channel estimates are obtained for the intermediate non-pilot symbols
in kernel Payload. These are then forwarded to Payload together with
the received data signals for retrieval of the transmitted information
bits. The Payload processing for symbols 1-4 can be done only after
the Channel Estimation for symbol 4. This leads to a large storage
requirement for data buffering. The Payload processing for symbols
0, 5, and 6 can be done without any extra storage overhead.

4. EXPLORATION FOR INTERLEAVING DECISION

Interleaving is a data layout transformation for combining the storage
of multiple arrays, so that blocks of data from different arrays are
stored contiguously, in order to achieve spatial locality in memory
accesses. For the LTE application under consideration, the sample
space of each of the antennas is represented by an array of size 2K, the
number of samples per antenna. By interleaving, the functionality of
the Shuffle Carrier Pilot kernel (Figure 4) to group the pilot elements
from the different arrays can be achieved. Reading out elements for
the pilot matrices requires loading of pilot elements from each of
the arrays separately (Figure 1(b)). From the application knowledge,
we know that the position of elements to be fetched is the same for
all the antennas. So, by interleaving we are able to group the data
to be extracted and thus reduce the number of memory accesses for
loading the same pilot matrices as observed in Figure 1(c).

4.1. Impact of Interleaving

Propagating the dependencies backwards from the point of extraction
of pilot elements (Shuffle Carrier Pilot kernel), where we need an
interleaved data set, the output of FFT is required to be in interleaved
form. This poses a requirement of interleaved data samples at the
input of FFT, that can be made possible by writing out the output
of IQ CFO Compensation kernel in this form. To achieve this data
re-arrangement we need two interleave operations for each pair of
vector loads – one each for least significant (LS) words and most
significant (MS) words as shown in Figure 3. Both these operations
are single-cycled in the processor we consider.

(a) For LS words (b) For MS words

Fig. 3: Interleave operation

The complete sample space (#elements) to be re-arranged is
N×ArraySize, where N is the number of arrays to be interleaved and

2611

Fig. 4: High level overview of the LTE 2x2 application

ArraySize is the number of samples associated with each of the anten-
nas (=FFT size). Thus, the number of vector loads (#Vector loads)
for shuffling the data becomes #elements/W, where W is the SIMD
width. Since interleaving at each stage is done between a pair
of arrays, interleaving N arrays takes k = log2N stages. As two
interleave operations are required for each pair of vector loads, the
number of additional operations for interleaving at the output of IQ
CFO compensation kernel becomes

#Extra Ops, A = 2 ×
#Vector loads

2
× log2N (1)

After IQ CFO compensation, FFT is to be performed on each
array. With interleaved samples at the input, now instead of perform-
ing FFTs for each antenna data set (Array) separately, we compute
one FFT with 11 stages (for 2K size) on 2K×N samples. As a result
we obtain interleaved FFT outputs. Performing FFT on all arrays
together reduces the number of coefficient (twiddle factors) accesses.
With the re-arranged data set, the samples to be operated upon
with the same twiddle factors are accessed together, thus preventing
the repeated coefficient loads by a factor equal to the number of
antennas, N. Following FFT we have the Shuffle Carrier/Shuffle
Carrier Pilot kernel which, after interleaving, has been removed as
its functionality of grouping the pilot elements has been achieved by
interleaving. This reduces the memory accesses required to fetch all
samples, vector-pack operations (involving extraction and insertion
of pilot elements), and finally writing back to memory the pilot
and data sub-carriers. In Channel Estimation kernel, the variation
in number of memory accesses, if any, is taken into account by
the array access computations. Proceeding from Channel Estimation,
all kernels until Payload have no impact due to interleaving. In the
Payload kernel, we need to de-interleave the data sub-carriers before
processing. De-interleaving at each stage brings together elements
of an array separated by W/2 as shown in Figure 5. Thus, to obtain
contiguous arrangement interleaving is done in log2W stages, leading
to additional operations given by

#Extra Ops, B = 2 ×
#Vector loads

2
× log2W (2)

Fig. 5: De-interleave operation

4.2. Global Trade-off Analysis and Overall Strategy

Interleaving may not always result in improved performance or
energy. The layout decision needs to be made taking into account the
overall objectives and constraints. For the SDR standard application
under consideration, our focus is to achieve energy optimization

for wireless devices without compromising on device performance.
Implementing interleaving requires additional operations that may
lead to overall performance degradation. Thus, there is a need for
a quantitative estimate of its impact. The complexity of the decision
increases when we have several candidate arrays for interleaving (at
least θ(2NM) when there are N arrays in M loops). The subset
of arrays to be interleaved, and the granularity of interleaving or
interleaving width, have to be chosen after a proper estimation of the
expected savings and associated overheads.

We begin with computing the total memory accesses for the
kernel mappings for both the cases – without and with interleaving –
by summing up the accesses associated with each array of the kernel.
The memory access count is estimated from the following parameters:
sets of setsize consecutive elements at intervals of offset accessed in
each loop iteration, the loop stride (stride), SIMD width (W) and the
array size (Size). Figure 6(a) illustrates the accesses for an array (A

(a) Logical access pattern (1 row = 1 loop
iteration)

(b) Physical access pattern (1 row
= 1 memory access)

Fig. 6: Access patterns for loop in Figure 1(a)

or B) corresponding to the loop shown in Figure 1(a) with an iteration
count of 100 and a stride of 12. Figure 6(b) shows the accesses made
with vector registers of size W for the same array. Comparing these
figures, we conclude that the access pattern in the block of length
BL = L.C.M.(stride, W) (= L.C.M.(12, 8) = 24), is repeated over
the entire array space. An array of size Size(= UB − LB + 1; UB
and LB denote the upper and lower loop bounds respectively), is

sub-divided into
⌈

Size
BL

⌉

blocks. Since the sets are positioned at fixed

offset offset, the number of sets per block = BL/offset. There are 2
possible cases.

• offset ≥ W. In this case only one set can be loaded per set of
memory accesses of W width. Number of accesses per set is

given by
⌈

setsize
W

⌉

and the memory accesses per block

acc per blk =
BL

offset
×

⌈ setsize
W

⌉

(3)

• offset <W. Here multiple sets may be accessed per vector load.
Assuming f sets are accessed in k vector loads, the desired
values of (k, f) will be the minimum of the positive integral
solutions for Equation 4 with k bounded by the maximum
number of accesses per block (= BL/W)

setsize + (f − 1)offset = k × W (4)

2612

With f sets accessed in k vector loads, the number of accesses
corresponding to sets in a block becomes

acc per blk =

⌈

BL
offset

×
k
f

⌉

(5)

If there does not exist an integral solution to Equation 4 then,
memory accesses per block is bounded by BL/W which leads
to loading all the elements of a block.

In both cases, the total number of memory accesses is given by

tot mem acc =
⌈Size

BL

⌉

× acc per blk (6)

For each symbol s, we compute the memory accesses saved
over the non-interleaved mapping. We then compute the performance
Overhead for the mappings with interleaving over the one with
contiguous mapping using the statically obtained operation details
per kernel. If the overhead is less than the estimated savings, then
the decision for interleaving is justified.

5. EXPERIMENTAL RESULTS

5.1. Framework

We have used an extension of the DRESC compiler framework [10]
for mapping the reference application to a CGRA architecture (Fig-
ure 7). The CGRA part comprises four SIMD enabled functional
units (FUs) and a central vector register file which is also coupled
to a VLIW processor with 3 FUs. For efficient utilization of the
vector FUs, the register file has a wide interface (256 bit wide) with
the two scratch pad memories (SPM), while the one with VLIW
FUs is 32 bit wide. An XML based language is used to describe
the architecture. The processor simulator provides run time statistics
to compare the memory accesses and performance for the kernel
mappings. We synthesized the HDL models of the processor using
Cadence RTL compiler for TSMC 40nm standard library and carried
out Power simulations on the synthesized design using Synopsys
Primepower. Delay and energy numbers for SPM are derived from a
commercial memory compiler.

Fig. 7: CGRA processor

5.2. Exploration Experiments for LTE

Based on our interleaving decision strategy discussed in Section 4.2,
we conclude that interleaving should be done only for the pilot
symbols in a slot. For non-pilot symbols, though there is a gain
with respect to memory access energy, the performance overhead
is very high. Interleaving implicitly implements one of the functions
of Shuffle kernel to group the pilots. The other one for extracting out
the data carriers can be postponed until Payload processing. Thus,
Shuffle kernel can be completely removed for all the symbols. The
kernels are re-written for studying the effect of interleaving on the
memory access variations due to different architectural parameters
for the LTE 2x2 application mapping on to the CGRA processor.

Variation with SIMD width: Memory access count is inversely
proportional to the SIMD width. With varying SIMD width, the
memory access counts associated with each of the kernels changes
by the same factor. Thus, the overall gain remains the same with
SIMD width variations as shown in Figure 8. For each non-pilot (NP)
symbol, the gain is 8.68%, while the gains are 8.37% and 7.72% for
pilot symbols 0 and 4 respectively. Averaging out over the time slot
(Avg. in figure) 8.51% reduction in memory accesses is achieved.

(a) SIMD width = 8 (b) SIMD width = 16

Fig. 8: Non-interleaved vs. interleaved storage (BW = 20MHz)

Variation with number of occupied PRBs: The maximum number of
PRBs associated with 20 MHz channel bandwidth is 100. However,
since 100% PRB occupation occurs rarely in practice, we study
the effect of interleaving with the number of occupied PRBs as
a parameter. A substantial improvement in gain is achieved with
reducing number of occupied PRBs. All the data samples have to
be processed until the Channel Estimation stage, while from MIMO
detection stage, the lower the number of occupied PRBs, the lower
the computations and corresponding memory accesses. Thus, the
percentage reduction in memory accesses with unchanged gain from
Shuffle kernel shows an approximately linear increase for each of the
symbols. The average gain over a time slot varies from 8.57% for
100 PRBs to 14.33% when the number of occupied PRBs is one.

In the above mappings, the percentage reduction in energy is
directly proportional to the corresponding reduced number of memory
accesses. However, interleaving leads to additional vector register
accesses, with a corresponding energy increase. We observe that in
the worst case, when all PRBs are occupied at maximum bandwidth
of 20 MHz, the additional register accesses lead to a 1.07% reduction
in gain due to reduced memory accesses over a time slot. This effect
becomes negligible with reducing number of PRBs because of the
reduced interleave operations in Payload and an unchanged gain from
Shuffle kernel. Similar studies performed on other configurations of
the LTE 2x2 application are not shown due to space limitations. Our
approach is also suitable for signal processing applications involving
data compression for audio and video signals. Here, in the coding
layer, frames of samples are created by grouping samples from each
of the sub-bands, which is similar to the case of pilot matrices
extraction from the output of FFT in LTE.

6. CONCLUSION

LTE is a memory dominant application with SDR because the number
of samples for FFT computation is very large, with significant
data buffering in the local memory in payload processing for non-
pilot symbols. This causes system implementations to suffer from
data memory organisation bottlenecks. We presented an approach
to improve memory energy by reducing memory accesses using an
efficient data layout targeting a CGRA with SIMD structure. We
conclude from global analysis of kernels that significant reduction (7-
15%) in data memory energy consumption can be achieved if array
data are interleaved, with no performance overhead.

2613

7. REFERENCES

[1] JDSU, LTE PHY Layer Measurement Guide. Application Note, 2011.

[2] S. Schwarz, M. Wrulich, and M. Rupp, “Mutual information based
calculation of the Precoding Matrix Indicator for 3GPP UMTS/LTE,”
in International ITG Workshop on Smart Antennas (WSA), Feb. 2010,
pp. 52 –58.

[3] L. Ruiz de Temino, C. Navarro I Manchon, C. Rom, T. Sorensen, and
P. Mogensen, “Iterative Channel Estimation with Robust Wiener Filter-
ing in LTE Downlink,” in IEEE 68th Vehicular Technology Conference,
Sept. 2008, pp. 1 –5.

[4] N. Manjikian and T. S. Abdelrahman, “Array Data Layout for the
Reduction of Cache Conflicts,” in In Proceedings of the 8th International
Conference on Parallel and Distributed Computing Systems, 1995.

[5] C. Kulkarni, C. Ghez, M. Miranda, F. Catthoor, and H. De Man,
“Cache conscious data layout organization for conflict miss reduction in
embedded multimedia applications,” IEEE Transactions on Computers,
vol. 54, no. 1, pp. 76 – 81, Jan 2005.

[6] E. Brockmeyer, M. Miranda, and F. Catthoor, “Layer assignment
techniques for low energy in multi-layered memory organisations,” in
Design, Automation and Test in Europe Conference and Exhibition,
2003, pp. 1070 – 1075.

[7] P. R. Panda, A. Nicolau, and N. Dutt, Memory Issues in Embedded
Systems-on-Chip: Optimizations and Exploration. Norwell, MA, USA:
Kluwer Academic Publishers, 1998.

[8] P. R. Panda, N. D. Dutt, A. Nicolau, F. Catthoor, A. Vandecappelle,
E. Brockmeyer, C. Kulkarni, and E. de Greef, “Data Memory Organiza-
tion and Optimizations in Application-Specific Systems,” IEEE Design
& Test of Computers, vol. 18, no. 3, pp. 56–68, 2001.

[9] Technical Specification Group Radio Access Network, “3GPP TS 36.211
V8.9.0 (2009-12),” 3rd Generation Partnership Project (3GPP), Tech.
Rep., Release 8, 2009.

[10] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“DRESC: a retargetable compiler for coarse-grained reconfigurable ar-
chitectures,” in IEEE International Conference on Field-Programmable
Technology (FPT) Proceedings, Dec. 2002, pp. 166 – 173.

2614

