

ABSTRACT

Efficient software implementation of Long Term Evolution

Advanced (LTE-A) wireless standard over word-based

micro-processor architecture is investigated. The very high

data rate of LTE-A requires more sophisticated and high

throughput bit level algorithms. Due to data format mis-

match, traditional word-based microprocessors face great

challenge implementing these complex bit-manipulations. In

this work, the implementation of bit-level interleaving

operation using perfect shuffling word-level instruction is

studied. In particular, an efficient implementation of bit-rate

matching algorithm is demonstrated on the Texas

Instruments c6416 CCS cycle accurate simulator with order

of magnitude performance enhancement.

Index Terms—Long Term Evolution, vector

processing, software defined radio, bit rate matching

1. INTRODUCTION

Wireless standards have continuously proliferated in daily

life, and their data rate has been increasing incredibly.

Looking forward to the future mobile devices, one obstacle

remains is handling the increasing variety and complexity

concurrently with limited on-device resources.

At one end, the mobile device must be flexible and support

the proliferating wireless standards; to meet the flexibility

requirement, researchers have proposed a programmable

communication processor architecture which is to perform

all standards with a fixed underlying device [1]. At the other

end, however, such architecture alone may not meet the

stringent throughput requirement.

To achieve both flexibility and high-throughput, current

trend appears that more mobile devices are the integration of

general purpose processor and a set of programmable

hardware accelerators [2]. Depending on the applications

supported, there may be a few ASICs and/or programmable

application specified integrated processor (ASIP), coupled

with one or a few processing cores. For examples, Texas

Instruments’ Keystone multicore architecture [2], aiming

multi-standard communication scenario, employs two TI

DSPs, a few decoders and FFT coprocessors. After off-

loading the decoding and FFT operations, the majority of

computing power is consumed by bit-level operation. The

bit-level operations were reported to be as high as 50% for

2x2 LTE [3] and 75% for Wifi transmitter on a TI-C64 DSP

[5]. Furthermore, these bit-operations may result in failure

to comply with standard [4]. The common shortage of bit-

level processing power for various communication standards

inspires an efficient hardware support for bit-level

operations.

Scrambling
Rate

Matching

Turbo

Encoder

CRC

Attach

Input Data

Frame

Modulation

Mapper

Layer

Mapping

Resource
Mapping

IFFTOutput Data

Fig. 1 LTE Downlink Block Diagram.

The low processing efficiency for bit-level algorithms is

because the processor is operating at the granularity of

instruction word. An instruction word is generally 32-bit or

64 bit wide. Such format mismatch frequently results in

inefficient execution on a word-level processor. For

example, a naïve version of the bit operations that treat each

bit as a char in C is 70X slower than the implementation

specially optimized for bit-level operation [4].

The bit-level implementation for Wifi has been discussed in

[5][6][7]. Recent research also presents optimization for

LTE-A along [8]. Yet efficient implementation of the bit-

level operation techniques which can support both LTE and

Wifi are not discussed. To achieve high flexibly and support

both the LTE-A and Wifi, this work proposes the efficient

software bit-operations with supports from a few bit-

manipulating instructions. We constrained the instructions

to be those demonstrated efficient in supporting Wifi bit-

level operations. Thus the hardware cost for the multi-

standard bit-level accelerator can be minimized.

 The rest parts of this paper are illustrated as follow: Section

2 introduces the bit-level operations in LTE-A, and related

works that address the problem. Section 3 presents the

implementation technique of proposed bit-rate matching

algorithm. The simulation results and a brief conclusion are

presented in Section 4.

CYCLE EFFICIENT BIT RATE MATCHING FOR LTE-A WITH

INSRUCTIONS SUPPORT

Jui-Chieh Lin and Yu Hen Hu, Fellow, IEEE

Department of Electrical and Computer Engineering, University of Wisconsin – Madison

2606978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

2. BIT RATE MATCHING IN LTE-ADVANCE

The bit-rate matching algorithm in the LTE-A system

adjusts the code rate corresponding to the supported

transmission rates. The block diagram is shown in Fig. 2.

The blocks inside the dotted line is the rate bit matching

blocks; the bit-rate matching block receives input from a

rate 1/3 Turbo encoder, and the output is sent to a virtual

buffer [9].

Three bit streams are generated from the turbo encoder,

systematic, parity-1 and parity-2. The systematic bit-stream

is the original data coming from the MAC layer and the

parity streams are redundant parity-bits added to combat

channel noise.

These streams are then fed into the sub-block interleavers.

Each of the sub-block interleaver can be essentially

considered as a matrix transpose; the column number of

matrix, Csubblock, equals 32, the corresponding row number

noted as Rsubblock, and the total bit number in the matrix is

denoted by K . After the matrix transpose, an inter-column

permutation (ICP) is performed to further randomize the

data. The inter-column permutation adopts the following

pattern:

< 0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 22, 14, 30, 1,

17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31 >

The parity-2 stream has a slightly different formula:

  



































 KRkC

R

k
Pk subblocksubblock

subblock

mod1mod)( ,

in which k is the sub-block interleaver’s output index. Thus

for index k, the corresponding bit is originally the π(k)-th bit

in the input.

After the interleaving process, the outputs of the three

interleavers are collected in a virtual buffer. The outputs of

the systematic interleaver go directly to the buffer. Such

buffer determines the portion of bits to be transmitted.

Parity-1 and parity-2 interleavers’ output interlace with bits

from the other parity interleaver. The reason for such bit re-

arrangement is to provide equal probability of odd and even

positioned bits from the encoder. The rate matching process

is shown in Fig. 3.

An example naïve implementation of the sub-block

interleaver parity-1 is showed in Fig. 4. Similar

implementation can be used for the other sub-block

interleavers and the other rate matching operations. Each

element in char array stores only one bit and iteration of the

for-loop calculates the index and retrieves one single bit to

the output. In the for-loop, the naïve implementation uses

several instructions per bit and results in inefficient

implementation.

3. BIT RATE MATCHING IMPLEMENTATION

In this section, we show our optimized bit-level operations

in LTE-A. We adopt the code blocks size, K = 1024bit mode

to address the algorithm. The method utilizes the regularity

of the rate-matching algorithm with an operation called

perfect-shuffling, which is implemented with the

instructions supported by the experimenting platform.

3.1 Perfect Shuffling Instruction

The perfect-shuffle operation splits a set into multiple

groups. However, with the platform in hand, we have only

two-way perfect-shuffle instructions. Therefore, we

demonstrated only the two-way perfect shuffling.

The Perfect-shuffle operation, _shfl, in Tic6416 [10] places

the lower half words in even positioned bits and the higher

half word in odd positioned bits. An exact inverse perfect-

shuffle operation is called _deal in the intrinsic. Such

instruction gathers the even-positioned bits into the lower

half-word and the odd-positioned bits into the higher half-

word. The formulas of a 2-way perfect shuffling for a 2N

bits input, In[k], where 0  k  2N-1 are:

Fig. 2. Rate Matching for Convolutional Coded Channels

Bit Selection

and Pruning
Bit

Collection

Sub-block

Interleaver

Systematic

Sub-block

Interleaver

Parity1

Sub-block

Interleaver

Parity2

Turbo

Encoder

Output

Fig. 3. Bit Level representation of Rate Matching

System
InterleIaver

Parity
Interleaver-1

Parity
Interleaver-2

Virtual Buffer

Fig. 4. Naïve Example of Sub-block Interleaver Parity 1

2607

 Out[2k] = In[k], if 0  k  N-1

 Out[2(k-N)+1] = In[k], if N  k  2N-1

Similarly, the inverse perfect-shuffle can be formulated,

within the range of 0  k  2N-1, as:

 Out[k/2] = In[k], if (k mod 2) = 0

 Out[(k-1)/2+N] = In[k], if (k mod 2) = 1

Illustration of the _shfl and _deal are shown in Fig. 5.

Since the provided perfect instructions in our experiment

platform, TI C6416, do not support inter-word perfect

shuffling, a packing instruction to extract the gathered half-

word is required. The _packl2 and _pack2 instructions

which collect the lower half-word, which has all the even

bits, and the higher half-word, which has the odd bits, and

put them into the output word correspondingly. The

operations of _packl2 and _pack2 with the perfect shuffling

instructions are shown in Fig. 6. If we let WA contain the bit

indexed by < 0, 1, 2 … 31> and WB contain the bit indexed

by < 32, 33, 34… 63>, the output WC contains the bit

indexed by < 0, 2, 4 … 62> and WD contains those indexed

by < 1, 3, 5 … 63>. WC and WD then contain the bit indexed

that has remainder 0 and 1 modulate by 2 respectively.

3.2 Sub-Block Interleaver

Because the sub-block interleavers’ column width is 32, one

can adopt a five-level perfect shuffling and perform the sub-

block interleavers [5]. We briefly show the C code

implementation of the sub-block interleaver with perfect-

shuffling intrinsic in Fig. 7.

3.3 Integration Interlaever-P1&P2 with Bit Collection

The interlacing of parity-1 and parity-2 streams can be

performed with perfect shuffling for each word from both

streams; the implementation is shown in Fig. 8. Two bit-

vector inputs, P1 and P2, are perfect shuffled and masked.

The first half from P1 are perfect shuffled to the even

indexed bits in Buf[0] (starts from 0); similarly, the first half

of P2 is stored in the odd-indexed bits. The output stored in

and Buf[1] is the interlaced bits from P1 and P2. Such

implementation greatly reduces the computation cycles

comparing to a naïve implementation.

However, since the interleaver output is the results of five

stages of perfect-shuffling, we can conceptually omit one

level of perfect shuffling from the interleaver design. To

better present the implementation of interlacing, we consider

a smaller yet illustrative example. Assume we are

interlacing the transpose of two 2x4 matrixes [a00, a01, a02,

a03, a10, a11, a12, a13] and [b00, b01, b02, b03, b10, b11, b12, b13],

the corresponding outputs of transposed matrixes are: [a00,

a10, a01, a11, a02, a12, a03, a13] and [b00, b10, b01, b11, b02, b12,

b03, b13]. And the bit-interlacing result of these two matrices

is: [a00, b00, a10, b10, a01, b01, a11, b11, a02, b02, a12, b12, a03, b03,

Figure 8. Bit Collection with Perfect-Shuffling .

Fig. 7. Perfect Shuffling Implementation of Sub-block

Interleaver Parity 1

P1

Buf[0]

P2

P1 & mask1

P2

_shfl(P1) _shfl(P2)

... ...

1 11 1 1 110 0 00 0 0 0

1 1 1 ...1 1 1 10 0 0 0 0 0 0

(P2 & mask1) >> 1

P2 & mask2(P1 & mask2) <<1

0 00 0 00 00 0 0 0 0 0 0

......

0 0 0 0 0 0 0 0 0 00 0 0 0

P1

Step1-1.

Step1-2.

... ...

......

...

...

...

mask1

mask2

Buf[1]
Figure 6. Inverse Perfect-shuffle and Packs on two 32-bit word.

WA WB

WB

_deal(WA) _deal(WB)
WA

......

...

... ...

...

WC=_pack2(WA,WB)
......WC

WD=_packh2(WA,WB)

... ...WD

Figure 5. Illustration of perfect-shuffle and inverse perfect-

shuffle.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 310

_deal()

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 312 4 6 8 10 12 14 16 18 20 22 24 26 28 300

_shfl()

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 310

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 310

2608

a13, b13]. The corresponding implementation in perfect-

shuffling is shown in Fig. 9.

We assume the instruction can combine the 2 bits of two

words as pack instructions. So, we combine the lower-half

of each word and the higher half of each word [a00, a01, b00,

b01, a10, a11, b10, b11] and [a02, a03, b02, b03, a12, a13, b12, b13]:

a12 b13 b12 b13a02 a03 b03 a13a00 a01 b00 b01 b10 b11a10 a11

a00 a01 a02 a03b00 b01 b12 b03a10 a11 a12 a13b10 b11 b12 b13

After we feed the above matrix into the 1
st
 interleaver with

perfect-shuffle and concatenate the output, we obtain the

expected interlacing bit-vectors.

Thus one level of perfect shuffling is saved.

4. SIMULATION RESULTS AND CONCLUSION

We implemented the bit-rate matching algorithm in ANSI C

and profiled the program with TI Code Composer Studio v5

[11]. The experimental platform is TI-C6416 DSP operating

at 600MHz; the results in clock cycle are compared with the

results of naïve char array type implementation; our

program is 9 times faster due to the efficiency of bit-level

parallelism. The cycle numbers for both implementations

are shown in Table I. Note in Table I, the naïve

implementation of 6144 mode has much worse performance

may results from the temporary storage exceeds the cache

size. TI bit rate co-processor (BCP) [12] works around with

the memory shortage by calculating one of the interlaver out

of the co-processor. However, we keep it here to show the

performance loss due to the large storage.

To the best of our knowledge, there are very few works

targeting efficient LTE-A rate matching implementation.

Although TI has regarded the necessity of bit-level

operation accelerator and proposed the BCP that supports

LTE-A, their BCP’s design was not disclosed and the blocks

remain as black-box to users [12].

Table I. Selected Results of Bit Matching Algorithms

Naïve

Rate Matching

This work

Rate Matching

Code Block

Size

Total

(Cycle)

Inv. S1

(Cycle)

Integrated Inv.

P1+P2+CB
(Cycle)

Total

(Cycle)

Comparison

(X)

1024 60430 2116 3064 5180 11.66

2048 110606 5797 7885 13682

8.08

4096 137229 11591 15767 27358

5.54

6144 477199 17385 23649 41034

34.33

This work extracts the common bit-patterns from the

operations in communications standards and executes them

with perfect-shuffling instruction and its inverse. The

compiled codes show that other than perfect-shuffling and

pack instructions, the assembly contains only ADD, SUB,

Branch, Load-word and Store-word instructions. Since no

additional complex support is required, the proposed bit-rate

matching algorithm can be easily integrated into a bit-

operation processor.

We believe that such bit-operation accelerator is essential to

device supporting multiple communication standards.

However, to achieve this goal, regularity of the bit-level

operations needs to be extracted from more communication

standards. So far, we have performed the LTE and Wifi

standard with similar instruction set supports; further

research is required to achieve an ultimate goal of bit-level

operations support for all communication standards.

5. REFERENCES

[1] J. Mitola III, Cognitive Radio Architecture, John Wiley & Sons,
Inc., 2006.

[2] Texas Instruments, “Code Composer Studio Development
Tools v3.3 Getting Started Guide,” SPRU509H, May 2008.

[3] Z. Lin, “Delivering Performance, Efficiency and Differentiation
with TI’s Multistandard Base Station SoCs” white paper, 2011.

[4] J.-C. Lin, S. J. Chen and Y. H. Hu, “Cycle Efficient Linear
Feedback Shift Register for Software Defined Radio", IEEE
Transaction on Computers, Apr. 2012.

[5] J. Lin et al., “Perfect Shuffling for Cycle Efficient Puncturer and
Interleaver for Software Defined Radio,” ISCAS’10, Jun. 2010.

[6] J.-C Lin et al., “Parallel Implementation of Convolution Encoder for

Software Defined Radio on DSP Architecture," SAMOS, Jul. 2009.
[7] J.-C Lin et al., “Cycle Efficient Scrambler Implementation for

Software Defined Radio,” ICASSP, Mar. 2010.
[8] J.-Fu Cheng et al. "Analysis of circular buffer rate matching for LTE

turbo code," pp. 1-5, VTC, 2008.

[9] “LTE; Physical Channels and Modulation”, 3GPP TS 36.211 v.
10.5.0, Jul. 2012.

[10] Texas Instruments, “TMS320C66x DSP, CPU and Instruction
Set,” SPRUGH7, Nov. 2010.

[11] Texas Instruments, “Code Composer Studio v5 Users Guide,”
available online, processors.wiki.ti.com/index.php/Download_CCS.

[12] Texas Instruments, “KeyStone Architecture Bit Rate
Coprocessor (BCP),” SPRUGZ1, Aug. 2011.

Figure 9. Perfect-Shuffling Implementation of Matrix Transpose

and Bit-Interlacing.

a00 a01 a02 a03 a10 a11 a12 a13

a00 a02a10 a12a01 a03a11 a13

a00 a02 a10 a12 a01 a03 a11 a13

b00 b01 b02 b03 b10 b11 b12 b13

b00 b02b10 b12b01 b03b11 b13

b00 b02 b10 b12 b01 b03 b11 b13

a00 a01 a02 a03b00 b01 b12 b03a10 a11 a12 a13b10 b11 b12 b13

2609

