
 
ABSTRACT 

Efficient software implementation of Long Term Evolution 

Advanced (LTE-A) wireless standard over word-based 

micro-processor architecture is investigated. The very high 

data rate of LTE-A requires more sophisticated and high 

throughput bit level algorithms. Due to data format mis-

match, traditional word-based microprocessors face great 

challenge implementing these complex bit-manipulations. In 

this work, the implementation of bit-level interleaving 

operation using perfect shuffling word-level instruction is 

studied. In particular, an efficient implementation of bit-rate 

matching algorithm is demonstrated on the Texas 

Instruments c6416 CCS cycle accurate simulator with order 

of magnitude performance enhancement. 

 
Index Terms—Long Term Evolution, vector 

processing, software defined radio, bit rate matching 

 

1. INTRODUCTION 

Wireless standards have continuously proliferated in daily 

life, and their data rate has been increasing incredibly. 

Looking forward to the future mobile devices, one obstacle 

remains is handling the increasing variety and complexity 

concurrently with limited on-device resources. 

At one end, the mobile device must be flexible and support 

the proliferating wireless standards; to meet the flexibility 

requirement, researchers have proposed a programmable 

communication processor architecture which is to perform 

all standards with a fixed underlying device [1]. At the other 

end, however, such architecture alone may not meet the 

stringent throughput requirement.  

To achieve both flexibility and high-throughput, current 

trend appears that more mobile devices are the integration of 

general purpose processor and a set of programmable 

hardware accelerators [2]. Depending on the applications 

supported, there may be a few ASICs and/or programmable 

application specified integrated processor (ASIP), coupled 

with one or a few processing cores. For examples, Texas 

Instruments’ Keystone multicore architecture [2], aiming 

multi-standard communication scenario, employs two TI 

DSPs, a few decoders and FFT coprocessors. After off-

loading the decoding and FFT operations, the majority of 

computing power is consumed by bit-level operation. The 

bit-level operations were reported to be as high as 50% for 

2x2 LTE [3] and 75% for Wifi transmitter on a TI-C64 DSP 

[5]. Furthermore, these bit-operations may result in failure 

to comply with standard [4]. The common shortage of bit-

level processing power for various communication standards 

inspires an efficient hardware support for bit-level 

operations.  
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Fig. 1 LTE Downlink Block Diagram. 

The low processing efficiency for bit-level algorithms is 

because the processor is operating at the granularity of 

instruction word. An instruction word is generally 32-bit or 

64 bit wide. Such format mismatch frequently results in 

inefficient execution on a word-level processor. For 

example, a naïve version of the bit operations that treat each 

bit as a char in C is 70X slower than the implementation 

specially optimized for bit-level operation [4]. 

The bit-level implementation for Wifi has been discussed in 

[5][6][7]. Recent research also presents optimization for 

LTE-A along [8]. Yet efficient implementation of the bit-

level operation techniques which can support both LTE and 

Wifi are not discussed. To achieve high flexibly and support 

both the LTE-A and Wifi, this work proposes the efficient 

software bit-operations with supports from a few bit-

manipulating instructions. We constrained the instructions 

to be those demonstrated efficient in supporting Wifi bit-

level operations. Thus the hardware cost for the multi-

standard bit-level accelerator can be minimized.   

 The rest parts of this paper are illustrated as follow: Section 

2 introduces the bit-level operations in LTE-A, and related 

works that address the problem. Section 3 presents the 

implementation technique of proposed bit-rate matching 

algorithm. The simulation results and a brief conclusion are 

presented in Section 4.  
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2. BIT RATE MATCHING IN LTE-ADVANCE  

The bit-rate matching algorithm in the LTE-A system 

adjusts the code rate corresponding to the supported 

transmission rates. The block diagram is shown in Fig. 2. 

The blocks inside the dotted line is the rate bit matching 

blocks; the bit-rate matching block receives input from a 

rate 1/3 Turbo encoder, and the output is sent to a virtual 

buffer [9]. 

 

Three bit streams are generated from the turbo encoder, 

systematic, parity-1 and parity-2. The systematic bit-stream 

is the original data coming from the MAC layer and the 

parity streams are redundant parity-bits added to combat 

channel noise.  

These streams are then fed into the sub-block interleavers. 

Each of the sub-block interleaver can be essentially 

considered as a matrix transpose; the column number of 

matrix, Csubblock, equals 32, the corresponding row number 

noted as Rsubblock, and the total bit number in the matrix is 

denoted by K . After the matrix transpose, an inter-column 

permutation (ICP) is performed to further randomize the 

data. The inter-column permutation adopts the following 

pattern: 

< 0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 22, 14, 30, 1, 

17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31 > 

 

The parity-2 stream has a slightly different formula: 
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in which k is the sub-block interleaver’s output index. Thus 

for index k, the corresponding bit is originally the π(k)-th bit 

in the input. 

After the interleaving process, the outputs of the three 

interleavers are collected in a virtual buffer. The outputs of 

the systematic interleaver go directly to the buffer. Such 

buffer determines the portion of bits to be transmitted. 

Parity-1 and parity-2 interleavers’ output interlace with bits 

from the other parity interleaver. The reason for such bit re-

arrangement is to provide equal probability of odd and even 

positioned bits from the encoder. The rate matching process 

is shown in Fig. 3. 

 
An example naïve implementation of the sub-block 

interleaver parity-1 is showed in Fig. 4. Similar 

implementation can be used for the other sub-block 

interleavers and the other rate matching operations. Each 

element in char array stores only one bit and iteration of the 

for-loop calculates the index and retrieves one single bit to 

the output. In the for-loop, the naïve implementation uses 

several instructions per bit and results in inefficient 

implementation.  

 

 

3. BIT RATE MATCHING IMPLEMENTATION 

In this section, we show our optimized bit-level operations 

in LTE-A. We adopt the code blocks size, K = 1024bit mode 

to address the algorithm. The method utilizes the regularity 

of the rate-matching algorithm with an operation called 

perfect-shuffling, which is implemented with the 

instructions supported by the experimenting platform. 

 

3.1 Perfect Shuffling Instruction 

 

The perfect-shuffle operation splits a set into multiple 

groups. However, with the platform in hand, we have only 

two-way perfect-shuffle instructions. Therefore, we 

demonstrated only the two-way perfect shuffling. 
 

The Perfect-shuffle operation, _shfl, in Tic6416 [10] places 

the lower half words in even positioned bits and the higher 

half word in odd positioned bits. An exact inverse perfect-

shuffle operation is called _deal in the intrinsic. Such 

instruction gathers the even-positioned bits into the lower 

half-word and the odd-positioned bits into the higher half-

word. The formulas of a 2-way perfect shuffling for a 2N 

bits input, In[k], where 0  k  2N-1 are: 
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  Out[2k]            = In[k],  if 0  k  N-1 

   Out[2(k-N)+1] = In[k],  if N  k  2N-1  

 

Similarly, the inverse perfect-shuffle can be formulated, 

within the range of 0  k  2N-1, as: 

        Out[k/2]             = In[k], if  (k mod 2 ) = 0 

  Out[(k-1)/2+N]   = In[k], if  (k mod 2 ) = 1 

 

Illustration of the _shfl and _deal are shown in Fig. 5. 

 

 
 

Since the provided perfect instructions in our experiment 

platform, TI C6416, do not support inter-word perfect 

shuffling, a packing instruction to extract the gathered half-

word is required. The _packl2 and _pack2 instructions 

which collect the lower half-word, which has all the even 

bits, and the higher half-word, which has the odd bits, and 

put them into the output word correspondingly. The 

operations of _packl2 and _pack2 with the perfect shuffling 

instructions are shown in Fig. 6. If we let WA contain the bit 

indexed by < 0, 1, 2 … 31>   and WB contain the bit indexed 

by < 32, 33, 34… 63>, the output WC contains the bit 

indexed by < 0, 2, 4 … 62> and WD contains those indexed 

by < 1, 3, 5 … 63>. WC and WD then contain the bit indexed 

that has remainder 0 and 1 modulate by 2 respectively. 

 

 
 

3.2 Sub-Block Interleaver 

 

Because the sub-block interleavers’ column width is 32, one 

can adopt a five-level perfect shuffling and perform the sub-

block interleavers [5]. We briefly show the C code 

implementation of the sub-block interleaver with perfect-

shuffling intrinsic in Fig. 7. 

 

 
3.3 Integration Interlaever-P1&P2 with Bit Collection 

The interlacing of parity-1 and parity-2 streams can be 

performed with perfect shuffling for each word from both 

streams; the implementation is shown in Fig. 8. Two bit-

vector inputs, P1 and P2, are perfect shuffled and masked. 

The first half from P1 are perfect shuffled to the even 

indexed bits in Buf[0] (starts from 0); similarly, the first half 

of P2 is stored in the odd-indexed bits. The output stored in 

and Buf[1] is the interlaced bits from P1 and P2. Such 

implementation greatly reduces the computation cycles 

comparing to a naïve implementation. 

 

 
 

However, since the interleaver output is the results of five 

stages of perfect-shuffling, we can conceptually omit one 

level of perfect shuffling from the interleaver design. To 

better present the implementation of interlacing, we consider 

a smaller yet illustrative example. Assume we are 

interlacing the transpose of two 2x4 matrixes [a00, a01, a02, 

a03, a10, a11, a12, a13] and [b00, b01, b02, b03, b10, b11, b12, b13], 

the corresponding outputs of transposed matrixes are: [a00, 

a10, a01, a11, a02, a12, a03, a13] and [b00, b10, b01, b11, b02, b12, 

b03, b13]. And the bit-interlacing result of these two matrices 

is: [a00, b00, a10, b10, a01, b01, a11, b11, a02, b02, a12, b12, a03, b03, 

Figure 8. Bit Collection with Perfect-Shuffling . 
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a13, b13]. The corresponding implementation in perfect-

shuffling is shown in Fig. 9. 
 

 
We assume the instruction can combine the 2 bits of two 

words as pack instructions. So, we combine the lower-half 

of each word and the higher half of each word [a00, a01, b00, 

b01, a10, a11, b10, b11] and [a02, a03, b02, b03, a12, a13, b12, b13]: 

 

a12 b13 b12 b13a02 a03 b03 a13a00 a01 b00 b01 b10 b11a10 a11

a00 a01 a02 a03b00 b01 b12 b03a10 a11 a12 a13b10 b11 b12 b13

After we feed the above matrix into the 1
st
 interleaver with 

perfect-shuffle and concatenate the output, we obtain the 

expected interlacing bit-vectors. 

 

Thus one level of perfect shuffling is saved. 

 

4. SIMULATION RESULTS AND CONCLUSION 

 

We implemented the bit-rate matching algorithm in ANSI C 

and profiled the program with TI Code Composer Studio v5 

[11]. The experimental platform is TI-C6416 DSP operating 

at 600MHz; the results in clock cycle are compared with the 

results of naïve char array type implementation; our 

program is 9 times faster due to the efficiency of bit-level 

parallelism. The cycle numbers for both implementations 

are shown in Table I. Note in Table I, the naïve 

implementation of 6144 mode has much worse performance 

may results from the temporary storage exceeds the cache 

size. TI bit rate co-processor (BCP) [12] works around with 

the memory shortage by calculating one of the interlaver out 

of the co-processor. However, we keep it here to show the 

performance loss due to the large storage. 

 

To the best of our knowledge, there are very few works 

targeting efficient LTE-A rate matching implementation. 

Although TI has regarded the necessity of bit-level 

operation accelerator and proposed the BCP that supports 

LTE-A, their BCP’s design was not disclosed and the blocks 

remain as black-box to users [12].  

 
Table I. Selected Results of Bit Matching Algorithms 

 
Naïve 

Rate Matching 

This work 

Rate Matching 
 

Code Block 

Size 

Total 

(Cycle) 

Inv. S1 

(Cycle)  

Integrated Inv. 

P1+P2+CB 
(Cycle) 

Total 

(Cycle) 

Comparison 

(X) 

1024 60430 2116 3064 5180 11.66 

2048 110606 5797 7885 13682 
 

8.08 

4096 137229 11591 15767 27358 

 
5.54 

6144 477199 17385 23649 41034 
 

34.33 

 

This work extracts the common bit-patterns from the 

operations in communications standards and executes them 

with perfect-shuffling instruction and its inverse. The 

compiled codes show that other than perfect-shuffling and 

pack instructions, the assembly contains only ADD, SUB, 

Branch, Load-word and Store-word instructions. Since no 

additional complex support is required, the proposed bit-rate 

matching algorithm can be easily integrated into a bit-

operation processor.  

 

We believe that such bit-operation accelerator is essential to 

device supporting multiple communication standards. 

However, to achieve this goal, regularity of the bit-level 

operations needs to be extracted from more communication 

standards. So far, we have performed the LTE and Wifi 

standard with similar instruction set supports; further 

research is required to achieve an ultimate goal of bit-level 

operations support for all communication standards. 
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Figure 9. Perfect-Shuffling Implementation of Matrix Transpose 

and  Bit-Interlacing. 
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