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ABSTRACT

To design an energy-efficient UWB ranging system, we propose a
compressive sampling (CS) technique tightly coupled to a recently
proposed hardware. Our goal is to design a system that is robust
to high noise and consumes less energy while providing reliable
localization. In this work, we first introduce a representation of
UWB signals as group sparse signals with the number of groups
corresponding to the number of objects in the environment. Also,
we design an efficient measurement system that is constructed using
low-density parity-check (LDPC) matrix, in order to satisfy several
constraints imposed by the hardware: non-negative integer entries
in measurement (sensing) matrix, constant row-wise sum of non-
zero entries in the matrix, and a unique structure characterized by
Kronecker product. To enhance performance, we propose a window-
based reweighted L1 minimization that outperforms other existing
algorithms in our simulation. The result shows that our proposed
method can achieve reliable target-localization, while using only
40% of the scanning (sampling) time required by the sequential
scanning scheme, even in highly-noisy environments.

Index Terms— compressive sampling (CS), ultra wideband
radar, low-density parity check code, target localization

1. INTRODUCTION

Ultra-wideband (UWB) systems have been utilized for important ap-
plications such as UWB radar tracking objects in space and monitor-
ing breathing or heartbeats of humans [1,2]. For example, breathing
monitoring can be achieved by localizing the subject’s chest move-
ment, which is critical for people who are under severe injury or se-
dation after surgery. This requires a precise and fast localization of
objects with high resolution. Compared to available solutions using
video camera techniques, UWB provides benefits of higher spatial
depth resolution [3].

In general, UWB radar sensors employ two types of detection
schemes: (i) energy detection [4] or (ii) direct sampling [5, 6]. En-
ergy detection achieves low power consumption and has a simple
architecture due to the nature of correlator-based detection circuitry.
At the expense of higher power consumption, direct sampling en-
ables the reconstruction of the reflection waveform in the whole de-
tection range and therefore provides opportunity for advanced signal
processing to extract additional information [7]. A practical chal-
lenge for UWB radar design is to overcome the low SNR from each
received pulse due to the UWB emission spectrum mask posed by
Federal Communications Commission (FCC) [8].

A recently developed hardware [5,6] adopts direct sampling ap-
proach, utilizing a ranging technique by sending multiple pulses then

averaging the received pulses in short time intervals (windows), each
corresponding to a certain roundtrip time of the reflected pulse. As-
suming the environment is relatively static, the receiver can localize
an object at a specific distance by selecting a corresponding win-
dow and determining if the window contains reflected signal. The
averaging within a chosen window provides robustness to noise. It
also requires less power consumption, because power is only con-
sumed during the measurement window, which can represent a small
percentage of time. However, a limitation of this scheme comes
from sequential sampling, i.e., candidate object locations have to
be probed in sequence, so that the time required to locate an ob-
ject will be proportional to the number of measurement windows. In
this paper we propose techniques that can significantly reduce the
scanning time, with no increase in overall power consumption. The
key observation is that in many situations the number of objects that
can be observed is small relative to the number of locations that are
probed. This allows us to probe several locations simultaneously,
so that each measurement combines reflections at several distances.
The processing can be used extract the actual position information
from the combined observations. Our approach is based on com-
pressed sensing (CS) principles with a design that tightly coupled to
the UWB hardware platform.

In the context of radar applications, many researchers have pro-
posed CS-based approaches thanks to the sparse structure of UWB
signal [9,10]. In [11], authors showed that the received signal can be
digitized at a rate much lower than the Nyquist rate, without a need
for matched filters. But, they ignore some important issues, such as
the high noise case and total power consumption. Similarly, CS was
applied to UWB detection applications, but with a mostly theoret-
ical focus [12–14] or with experiments in a relatively simple envi-
ronment [15]. Also, a precise CS-UWB positioning system was pro-
posed by exploiting the redundancy of UWB signal captured at mul-
tiple receivers to localize a transmitter [16, 17]. This work achieved
low ADC sampling rate but the rate is higher than that of our UWB
hardware platform also does not show robustness to large amount
of noise. As a CS approach tightly coupled to hardware, Random-
Modulation Pre-Integrator (RMPI) was proposed to achieve low-rate
ADC by random modulation in analog domain [18–20] but their
hardware appropriate to low-rate signal acquisition imposes differ-
ent constraints, i.e. block-diagonal sensing matrix with Bernoulli
random entries, from those by our UWB hardware.

In this work, we propose a CS technique tightly coupled to ca-
pabilities of recently developed hardware [5, 6] in order to design a
system that is robust to high noise and consumes less power while
providing reliable localization. First, we formulate sparse structure
of signal of interest. The UWB signal is sparse due to two main
sources: temporal localization of pulses and existence of few ob-
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jects. Combined with the UWB ranging system, this leads to a spe-
cial structure where sparse non-zero entries are clustered into a few
groups (windows). The number of groups is equal to the number
of object in the region of interest. Second, we design an efficient
measurement system subject to several constraints imposed by the
hardware. The constraints include (i) non-negative integer entries in
sensing matrix (ii) constant row-wise sum of entries in the matrix
(iii) unique structure characterized by a Kronecker product. Under
the constraints, we construct a sensing matrix by using low-density
parity-check (LDPC) matrix which is recently shown as a good mea-
surement system in [21, 22]. Third, to enhance the localization per-
formance, we propose a window-based reweighted L1 minimization
which shows good performance for abovementioned signal model
and measurement system. In simulation, we compare our proposed
method with other existing reconstruction algorithms with respect
to several metrics evaluating localization performance. Our simu-
lation result shows that our proposed method can achieve reliable
target-localization while using only 40% of the sampling time re-
quired by the corresponding sequential scanning scheme, even in a
highly-noisy environment.

2. PROBLEM FORMULATION

2.1. UWB Ranging System

A recently proposed hardware design [5, 6] provides a receiver that
can probe for the presence of objects within a small range of dis-
tances. This is illustrated in Fig. 1. In this approach, short-time
pulses are transmitted periodically and we determine a short time
interval (window) which contains the reflected signal. Under the as-
sumption that the reflected signal resides within a window without
overlapping with the others, we can localize an object in a distance
from the receiver by identifying the window. Denoting cycle the in-
terval between successive transmitted pulses as shown in Fig. 1, we
divide a cycle into windows, each corresponding to a small distance
range.

Fig. 1. Basic motivation for UWB ranging system. The short-time pulses are trans-
mitted periodically over multiple cycles and the rangin system determines a short time
interval (window) which contains the reflected signal.

The hardware design has several advantages: low power con-
sumption, robustness to large amount of noise, and freedom to
choose different sampling algorithms. By selecting a specific range,
the system cannot observe objects at other distances, because mea-
surements are performed only within the chosen window. But, as a
consequence, power consumption is significantly reduced, since no
power is consumed during other window intervals, while averaging
over multiple cycles provides robustness to noise. Also, the averag-
ing makes the hardware design robust to large amounts of noise at
the receiver, e.g. thermal noise from circuits, reflection from objects
that are not of interest, etc. The power of noise is significantly high
compared with the original signal to reconstruct; the upper bound of
SNR with the hardware design is about −21dB based on the discus-
sion in [23]. Furthermore, the system does not consume extra energy
when changing windows to sample, thus this gives freedom to de-

velop better sampling algorithm by measuring signals in multiple
windows which motivates our new sampling scheme.

2.2. Sparse UWB Signal Model based on Windows

Without noise, e.g. thermal noise from circuits and multipath re-
flections from objects out of interest, the sampled signal, x, will be
sparse because of two main reasons. First, UWB pulses are very
narrow in time, so that the received signals are themselves sparse
in the time domain, i.e., reflected pulses corresponding to an object
of interest are present in a short time interval. Second, the number
of objects of interest is small compared to the number of windows.
Thus, x has a special structure such that sparse non-zero entries are
clustered within a few windows, with the number of windows equals
to the number of objects in the region of interest.

Let Ns be the number of samples in each window, and assume
that the UWB-ranging system has non-overlapped Nw windows in
each cycle, each of which can capture all reflections from a specific
distance from the receiver. Thus, x can be divided into NW sub-
signals, xi, i ∈ 1, ..., Nw:

xT = [x1, . . . , xNS︸ ︷︷ ︸
x1

, . . . , xN−NS+1, . . . , xN︸ ︷︷ ︸
xNw

]T (1)

Since every xi has a length ofNS , the dimension of x,N , isNsNw.
Our signal model based on windows is similar to those proposed by
other researchers such as block-sparsity, cluster-sparsity, or multiple
measurement vector (MMV) model [24–26]. Our sparse signal, x,
is a simplified version of them with non-overlapped and equal-sized
groups of non-zero entries. However, this signal model, to the best
of our knowledge, have not been applied to UWB signal measured
by a realistic hardware with ranging capability.

2.3. UWB Measurement System and Matrix Formulation

Consider the system in [5,6] and letNc be the number of cycles over
which the receiver integrates before the ADC is activated. After the
integrated analog waveform is sampled by the ADC, the receiver ob-
tains N(= NsNw) samples in total. Since we take a summation
of samples to collect measurements, y, we can represent y as linear
combinations of x. Thus, a sampling scheme can be expressed as
y = Φx + n with sensing matrix, Φ and noise vector, n. Here, n
is a vector of the same length of y and each entry, n(i), is a sum-
mation of random variables following i.i.d. Gaussian distribution,
N(0, σ2

N ): n(i) = ΣNc
i=1ni, ni ∼ N(0, σ2

N ).
Since the UWB ranging hardware obtains measurements based

on windows, we can formulate Φ as a matrix containing blocks with
the dimension of Ns-by-Ns, each corresponding to a specific win-
dow. Also, Φ contains non-negative integer entries indicating the
number of cycles integrated in order to obtain measurements. In
details, Φ(i, j) indicates the number of cycles for x(j) to be inte-
grated to obtain y(i). Thus, we can easily compute the total scan-
ning time by taking summation of all the (non-zero) entries in Φ:∑
∀i,j Φ(i, j).

In this work, we consider two sampling schemes: (i) sequen-
tial sampling scheme presented in [5, 6] and (ii) hardware-driven
compressive sampling (HDCS) proposed in this paper. As shown
in Fig. 2, the sequential sampling scheme scans each identical win-
dow over 5 cycles, Nc = 5, until it scans all 4 windows, Nw = 4.
Thus, each measurement, y(i), is obtained by taking summation of
x(i) five times with additional noise. On the contrary, HDCS scheme
collects information about multiple windows from a measurement by
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W1 W1 W1 W1 W1 W2 ... ... ... W2

W1 W2 W2 W2 W3 W2 W3 W3 W3 W4

... W4 ... ... ... W4

W1 W3 W4 W4 W4

...

5 cycles

time

Sequential sampling

Reduced Sampling Time !!

...

HDCS sampling

Fig. 2. Advantage of HDCS scheme. The measurements are obtained from 4 windows
containing 4 samples throughout 5 cycles: Ns = 4, Nw = 4, and Nc = 5. While
Sequential sampling scans a single window during 5 cycles, HDCS collects information
from multiple windows during 5 cycles, which leads to sampling time reduction.

scanning a certain combinations of windows within 5 cycles. Here,
we fix the number of cycles for windows to be scanned for a mea-
surement as Nc = 5 for simplicity, thus we can achieve faster scan-
ning by reducing the number of measurements.

These sampling processes can be represented by a matrix formu-
lation. The sequential sampling scheme in Fig. 2 can be represented
by a diagonal sensing matrix with the Nc on its diagonal as Φ1 in
Eq. (2).

Φ1 =

5I 0 0 0
0 5I 0 0
0 0 5I 0
0 0 0 5I


16×16

, Φ2 =

[
1I 3I 1I 0
0 1I 3I 1I
1I 0 1I 3I

]
12×16

(2)

However, HDCS sensing matrix, Φ2, does not necessarily have
non-zero entries on its diagonal depending on the combinations of
widows providing information for measurements. The intuition of
HDSC is similar to one in our previous work [27] such that energy-
efficient data gathering can be achieved by collecting measurements
from multiple clusters on wireless sensor network. If Φ2 can give
us the same level of reconstruction as Φ1, we can achieve 0.75
scanning time reduction which leads to the same amount of total
power consumption as shown in Fig. 2. Now, the challenge is how
to design a good sensing matrix satisfying the constrains imposed
by the hardware.

3. PROPOSED APPROACH

3.1. LDPC Measurement System

In order to reduce the scanning time, the challenges are how to de-
sign a measurement mechanism that can achieve successful recon-
struction with fewer measurements. With traditional CS, the under-
determined sensing matrices such as Gaussian random matrix and
(uniform randomly) down-sampled Fourier matrix have been ex-
ploited as sensing matrices because they satisfy Restricted Isometry
Property (RIP) with high probability [10].

However, combined with UWB ranging system [5,6], these pop-
ular sensing matrices are no longer appropriate due to three addi-
tional constraints: i) all the entries of the matrix should be non-
negative integers because the entries indicate the number of cycles.
This condition rules out popular sensing matrices such as random or
Fourier matrices that have real entries. ii) the sum of entries in each
row is fixed as a constant number of cycles,Nc, for simplicity. Thus,
the scanning time is directly proportional to the number of rows in
the sensing matrix. iii) non-zero entries of each row can exist only
at the positions with constant shift of Ns. Thus, sensing matrix, Φ,
can be formulated as a Kronecker product of the identity matrix with
a matrix containing coefficients at the corresponding positions, A

(effective sensing matrix):

ΦM×N =


a(1,1)I . . . a(1,NW )I

...
. . .

...
a(MW ,1)I . . . a(MW ,NW )I

 = AMW ×NW
⊗INS

(3)

To satisfy the conditions imposed by the hardware, we propose
to adopt low-density parity-check (LDPC) measurement system re-
cently studied in [21, 22]. In [21], authors provide strong theoretical
results showing that parity-check matrices of good channel codes can
be used as provably good measurement matrices under basis pursuit.
In [22], authors show that LDPC matrices significantly outperform
other current CS matrices. Thus, by using LDPC matrix as the ef-
fective sensing matrix, A, we can construct a good sensing matrix,
Φ by Eq. (3) because the coherence of sensing matrix, Φ, is the
same as effective sensing matrix, A. This can be easily shown as
UΦ = ΦT Φ = (A ⊗ I)T (A ⊗ I) = ATA ⊗ I = UA ⊗ I .
Thus, if A is a good CS measurement matrix, then Φ in Eq. (3) is
also a good sensing matrix. Also, since LDPC matrices have the
same number of 1’s in each row, we can construct Φ by evenly dis-
tributingNc cycles over the non-zero entries of LDPC matrix, which
satisfies the second condition.

3.2. Window-based Reweighted L1 Minimization

In reconstruction, the goal is to identify the data support which con-
tains the non-zero entries because the data support uniquely corre-
sponds to the locations in space. With sequential sampling scheme
in [5, 6], we can reconstruct a signal, x̂, by dividing integrated
measurements by the number of cycles, Nc. Then, thresholding is
applied with a empirically chosen threshold in order to determine
data support. With this technique, more cycles provide higher SNR
because the noise can be approximated as identically independent
Gaussian noise. However, the approach requires large number of
cycles enough to remove the noise. Also, this should scan all the
windows sequentially so that it results in longer scanning time (or
higher power consumption).

With HDCS scheme discussed in Section 3.1, we propose two-
phase localization: non-linear signal reconstruction and thresh-
olding. For successful reconstruction of the signal with powerful
noise, we propose iterative window-based reweighted L1 mini-
mization (WRL1). In details, we iteratively minimize L1 norm of
weighted sum of intermediate xi subject to data-fitting constraint:
min ‖

∑
∀j,k W

j
i (k)xj

i (k)‖1 s.t. ‖Φxi − y‖2 ≤ δ. Here, we
adopt a classical trick that has been used in iterative reweighted L1

minimization but the only difference is that the weight is computed
by window-wise operation. the weight vector of the jth window at
the ith iteration, Wi[j], is

W j
i = 1

1

‖xj
i−1‖1 + ε

, j ∈ {1, . . . , NW }, (4)

where 1 is a vector with the value of 1 and the dimension of NS .
The weights for the entries belonging to kth window are computed
as L1 norm of partial intermediate signal, x[k], within that window.
Thus, the weight increases as the energy in the corresponding be-
comes smaller, which indicates that this algorithm provides equal
chance to find the right solution over all the windows. The updat-
ing scheme based on windows is similar to the adaptive group lasso
algorithm [28] or reweighted M-Basis Pursuit in [26]. For thresh-
olding, a window is chosen as one of the possible data supports if the
energy of the window is greater than a empirically chosen threshold,
‖x̂[k]‖2 > 0.001. Note that the threshold is fixed throughout this
paper, not changing according to different noise levels or different
number of measurements.
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4. SIMULATION RESULT

For simulation, we consider 155 windows which contains 16 sam-
ples thus the signal of interest, x, has a length of N = NwNs =
2480. Also we assume that we obtain one measurement through
500 cycles: Nc = 500. In the simulation, the goal is to localize
three objects in the region of interest. We generated a data set of
80 realizations and each data contains three windows with non-zero
entries indicating three objects in space; those windows are chosen
with uniformly random manner and the values of non-zero entries
are generated by Gaussian distribution.

0 

2 

4 

6 

8 

10 

0.2 0.4 0.6 

MS
E 

Sampling Time Ratio 

Avg L1 L2 / L1 RL1 WRL1 

Fig. 3. Cost ratio vs. MSE: For CS sampling schemes, cost is the total sampling time
to collectM measurements. Since we fix the number of cycles,Nc, for every measure-
ment as 500 in the simulation, the cost ratio is a ratio of the number of measurements
to the dimension of signal,M/N . But, for sequential sampling scheme (noted ’Avg’ in
the figure), we takeN measurements with reducedNc.

As discussed in Section 3.1, we construct measurement matrix
using LDPC matrices with different number rows, Mw, by chang-
ing the number of 1’s in each column from 1 to 3 with that in each
row fixed as 5. Then, 500 (cycles) are evenly distributed over non-
zero entries (1’s) in each row thus A has 5 non-zero entries with
the value of 100 in each row. Also, we consider noisy measure-
ments with three different noise levels, σN ∈ {10, 20, 30}, which
generates very low SNR (approximately −16.5dB, −22.6dB and
−26.1dB on average over our data set, respectively). For recon-
struction, we compare window-based reweighted L1 minimization
(WRL1), with three other algorithms: traditional L1 minimization
(L1) [9, 10], L2/L1 minimization (L2/L1) [24], and reweighted
L1 minimization (RL1) [29, 30].

(a) σN vs. max. mis-hit (b) sampling time ratio vs. max. mis-hit

Fig. 4. Performance comparison with respect to maximum mis-hit of data support: (a)
Fix sampling time ratio as 0.4 and compare performance at different noise levels. (b)
Fix noise level as 30 and compare performance at different sampling time ratios.

To evaluate performance, we need to measure localization qual-
ity as well as scanning time. The scanning time can be easily com-
puted by counting the number of rows of sensing matrix, Φ, because
we fix the number of cycles (Nc) for every measurement as 500 in
the simulation. Thus, the cost ratio is a ratio of the number of mea-
surements to the dimension of signal,M/N . To evaluate localization
quality, Mean Squared Error (MSE) can be used by measuring the
entry-wise difference of values between x and x̂. Fig. 3 shows the
performance comparison of our proposed reconstruction technique,
WRL1, to other reconstruction techniques with respect to MSE and
scanning time. However, for sequential sampling scheme (noted

’Avg’ in the figure) [5, 6], we take N measurements with reduced
N ′c. To compare two sampling schemes, N ′c is chosen as MNc

N
be-

cause N ′cNwN = MNwNc. Thus, N ′c = NcM
NwNs

= 0.202M . The
result shows that HDCS schemes with different reconstruction tech-
niques achieve about five times better reconstruction quality with
similar scanning time.

Although Mean Squared Error (MSE) is one of the most generic
metric for reconstruction evaluation, it can be misleading because
smaller MSE does not always guarantee better window identifica-
tion. For example, perfect identification of data support can result in
large MSE if the large difference between x and x̂ exists within
the correct data support. Thus, we consider two additional met-
rics to evaluate mismatch of data support: maximum mis hit and
F-measure. (i) To evaluate the performance in the worst case, we
consider the maximum mis hit of data support by computing the
maximum distance (in terms of ”window”) between chosen windows
from the thresholding of x̂ and the ground truth. (ii) We also com-
pute F-measure discussed in [26] as 2 |supp(x)∩supp(x̂)|

|supp(x)|+|supp(x̂)| , where
supp(x) = {i ∈ [1, . . . , NW ] : ‖x[i]‖2 > 0.001}. Note that the
F-measure is equal to 1 when the data support of the reconstructed
signal coincides exactly with the ground truth.

(a) σN vs. F-measure (b) sampling time ratio vs. F-measure

Fig. 5. Performance comparison with respect to F-measure: (a) Fix sampling time
ratio as 0.4 and compare performance at different noise levels. (b) Fix noise level as 30
and compare performance at different sampling time ratios.

Fig. 4 and Fig. 5 compare performance with respect to above-
mentioned two metrics. Here, we do not consider sequential sam-
pling scheme because the scheme requires a empirically chosen
threshold for data-support identification and this hurts fair compar-
ison. In Fig. 4(a), WRL1 shows very small maximum mismatch
at every noise level which is almost equal to 1. This indicates that
our identified windows are mismatched at most by one window on
average over 80 data. Also, WRL1 shows very stable performance
at different noise levels. Fig. 4(b) shows that, in the highest level of
noise we tested, WRL1 shows the best performance and it reaches
to almost perfect reconstruction at 0.6 sampling time ratio. Sim-
ilarly, in Fig. 5(a), WRL1 shows the highest F-measure at every
noise level which is very close to 1. Also, it does not drop as the
noise level increases as shown in Fig. 5(b).

5. CONCLUSION

To design energy-efficient UWB ranging system, we propose a CS
approach incorporated with a novel hardware structure. we first for-
mulate UWB signal with a special structure that sparse non-zero en-
tries are clustered into a few groups. Also, we design an efficient
measurement system that is constructed by low-density parity-check
(LDPC) matrix, which satisfies several constraints imposed by the
hardware. To enhance performance, we propose a window-based
reweighted L1 minimization which outperforms other existing algo-
rithms in our simulation. The result shows that our proposed method
can achieve reliable target-localization only with 40% of sampling
time of the sequential sampling scheme in highly-noisy environment.
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