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ABSTRACT 
 
The Human Visual System (HVS) exhibits multi-resolution 
characteristics, where the fovea is at the highest resolution 
while the resolution tapers off towards the periphery. Given 
enough activity at the periphery, the HVS is then capable to 
foveate to the next region of interest (ROI), to attend to it at 
full resolution. Saliency models in the past have focused on 
identifying features that can be used in a bottom-up manner 
to generate conspicuity maps, which are then combined 
together to provide regions of fixated interest. However, 
these models neglect to take into consideration the foveal 
relation of an object of interest. The model proposed in this 
work aims to compute saliency as a function of distance 
from a given fixation point, using a multi-resolution 
framework. Apart from computational benefits, significant 
motivation can be found from this work in areas such as 
visual search, robotics, communications etc.  
 

Index Terms— Foveation, Saliency, Multi-resolution 
 

1. INTRODUCTION 
 
Visual search has become an important prerogative for new-
age computer systems. Tasks such as recognizing scenes in 
a photograph, identifying models of vehicles, locating 
missing items in a retail stores, autonomously navigating 
through a departmental store etc. have great relevance to 
today’s information technology (IT) demands. The Human 
Visual System (HVS) has been built in such a way that it 
becomes necessary to move the eyes in order to facilitate 
such tasks. Understanding the efficiency with which our 
eyes intelligently take in pertinent information to perform 
different tasks has significant impact to building the next-
generations autonomous systems.  

Visual attention has gained a lot of traction in 
computational neuroscience research over the past few 
years. Various computational models [1], [2], [3] have used 
low-level features to build information maps which are then 
fused together to form what is popularly called as a saliency 
map. Given an image to observe, this saliency map in 
essence provides a compact representation in terms of what 
is most important in the image.  

There are a couple of handicaps when applying these 
computational models directly to the next-generation 
autonomous machines. These models assume that the human 
eye uses its full resolution across the entire field of view 

(FOV), which is not the case. The resolution drops off from 
the center of the fovea towards the periphery and the HVS is 
adept at foveating so as to investigate other areas in the 
periphery when attention is drawn in that direction. As 
shown in Figure 1, the distribution of cones is highly 
concentrated around the fovea and there is a steep fall-off in 
resolution beyond 10 degrees of the fovea [4]. Our eyes thus 
need to foveate, to allow points of interest to fall on the 
fovea – the region of highest resolution. It is only after this 
foveation process that we are capable of gathering complete 
information from the object of interest that drew our 
attention to it. It is due to this reason that humans tend to 
select nearby locations more frequently than distant targets 
and salience maps need to be computed taking this into 
account to improve the predictive power of the models [5], 
[6]. The second handicap of these models is that due to their 
computational complexity, it becomes extremely 
challenging to build real-time embedded systems that are 
capable of being driven by visual attention. Although 
significant success has been achieved by designing custom 
accelerators [7], [8] that take advantage of the streaming 
nature of the computations involved, achieving real-time 
frame rates for high-definition videos (approximately 2 
megapixels/frame) is still a tall order. The framework 
proposed in this paper aims to tackle both these problems in 
the course of solving the bigger question of where to foveate 
next, when designing an autonomous robot.  The rest of this 
paper is organized as follows. Section 2 describes the 
proposed multi-resolution methodology. Performance 
evaluation results and comparisons with the original model 
are presented in Section 3. A discussion on related work in 
this area is a part of Section 4 while further evolution of this 
framework and concluding remarks are a part of Section 5.

 
Figure 1: Distribution of rods and cones in the retina [4] 
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2. METHODOLOGY 
 
 We choose an information theoretic computational saliency 
model, AIM (Attention based on Information Maximization) 
as a building block for our foveation framework. AIM has 
been benchmarked against many other saliency models and 
it has proven to come significantly close to human fixations 
[9]. The model looks to compute visual content as a measure 
of surprise or rareness using Shannon’s self-information 
theory. The algorithm is divided into three major sections. 
The first section involves creating a sparse representation of 
the image by projecting it on a set of basis learned using 
Independent Component Analysis (ICA). The next section 
involves a density estimation using a histogram back 
projection technique. Finally a log-likelihood is computed 
across the entire basis to give the final information map. For 
more detailed information on the algorithm and the theory 
behind it, one is pointed to [1], [10]. 

For our experiments, we use a ½” Format C-Mount 
Fisheye Lens having a focal length of 1.4 mm and a Field of 
View (FOV) of 185°. The images captured are 1920x1920 
in size. The images have some inherent non-linearity as one 
moves away from the center, which is similar to the way the 
human eyes perceive the world around. In order to model 
the steep roll-off in resolution from fovea to periphery, we 
build a three level Gaussian pyramid from the original 
image. To do this, we first extract a 50% high-resolution 
center region from Level 1 as our fovea, as shown in Figure 
2. After blurring and downsampling, a second region is 
cropped out from Level 2, representing the mid-resolution 
region. Another round of blurring and downsampling leaves 
us with the entire FOV but at a much lower resolution 
(Level 3). It should be noted that as the resolution drops off, 
the FOV is gradually increasing in our framework. 

 We run AIM on each of these three regions, which 
returns corresponding information maps. These information 
maps represent the salient regions at different resolutions as 
shown in Figure 3 (c). There are a number of ways in which 
to fuse these information maps to give a final multi-
resolution saliency map. We believe that an adaptive 
weighting function on each of these maps will be a valuable 
parameter to tune in a dynamic environment. However for 
this work, which focuses on static images, we use weights of 

w1 = 1/3, w2 = 2/3 and w3 = 1 for the high-resolution fovea, 
the mid-resolution region and the low-resolution region 
respectively. We use these weights since pixels in the fovea 
occur thrice across the pyramid while pixels in the mid-
resolution region occur twice. These weights thus prevent 
the final saliency map from being overly center-biased. 
Since these maps are of different size, they are appropriately 
up-sampled and zero-padded before adding them up.  
 

3. RESULTS 
 
To validate our model (MR-AIM), we ran experiments on a 
series of patterns as shown in Figure 4. First we considered 
a series of spatially distributed red dots of same dimensions 
against a black background (Figures 4 (a) and 4 (b)). As can 
be seen in the saliency result (Figures 4 (e) and 4 (f)) there 
is a gradual decrease in saliency as one moves away from 
the fovea (Red corresponds to regions of higher saliency 
while Blue corresponds to regions of lower saliency). 
Onsets are considered to drive visual attention in a dynamic 
environment, so in Figure (c) we next considered the 
arrivals of new objects of interest within the fovea (red dot) 
and towards the periphery (yellow dot). Maximum response 
is obtained in the region around the yellow dot (Figure 4 
(g)). Next we consider a movement of the yellow dot further 
away from the fovea (Figure 4 (d)). Again we notice a slight 
shift in saliency moving attention towards the center (Figure 
4 (h)). These experiments give us valuable information on 
the dynamics of visual attention in a volatile situation. 

 
Figure 2: Image breakdown into a 3-level architecture which has 

a central high-resolution fovea, a mid resolution region and a 
low-resolution region. The lowest level covers the entire FOV 

      
(a) (b) (c) (d) 

Figure 3: Methodology of the proposed framework from Left to Right (a) Input Image (b) Image Pyramids with increasing FOV          
(c) Visual Attention Saliency Maps (d) Multi-resolution Attention Map by fusing (c) with different weights 
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Our next set of experiments was to compare the multi-
resolution model with the original AIM model and evaluate 
the former, both, in terms of quality and performance. It 
should be noted here that the dataset provided in [9] has 
images of maximum size 1024x768, while the framework 
designed here is ideally targeted towards high resolution 
images that contain a lot of salient objects. Figure 6 
(Column 1) shows an example of such an image with 
increasing size from top to bottom. Column 2 depicts results 
from the original AIM model. Column 3 shows the output of 
the MR-AIM. For smaller image sizes, AIM does a very 
good job in spotting the main ROIs. But as the image size 
starts to increase, it starts to pick edges as most salient. This 
is due to the limited size (21x21) of the basis kernels used. 
Increasing the size of the kernels is not a viable option for a 
real-time system, since that would in turn increase the 
computation time. MR-AIM has no such problem. Since it 
operates on smaller image sizes at different resolutions, it 
can detect objects at different scales. There is a bias towards 
objects in the center, but the weights do a significant job in 
capturing ROIs towards the periphery as well. It should be 
noted here that MR-AIM would not pick up objects that 
become extremely salient in the periphery, but with the 
addition of other channels of saliency, like motion, in the 
periphery, it will be more robust in a dynamic environment. 

Another set of experiments run was on a series of video 
frames captured in an environment where there was 
sufficient activity in the periphery to activate attention as 
shown in Figure 7. We compare our model to other models 
rather than verifying against actual eye-tracking data since 
such data is not readily available for high-definition images. 
The top row shows Itti’s results for frame numbers 17, 22 
and 27. The middle row shows AIM’s results for the 
respective frames while the bottom row shows MR-AIM’s 

response. For a fair comparison we deactivated the 
inhibition of return in Itti’s model. Both AIM and MR-AIM 
capture the onset of the bicyclist in frame 22 successively. 
These experiments offer us significant confidence about the 
qualitative performance of MR-AIM. 

To evaluate the quantitative performance improvement 
we gained by this framework, we ran multiple iterations of 
AIM on different image sizes and compared the run times 
with MR-AIM. All experiments were run using MATLAB 
on an Intel Xeon 2.4 GHz processor. As shown in Figure 5, 
we achieve more than 2x speedup in software. Our 
experiments showed that with a six-stage multi-resolution 
framework, we could achieve up to 15x speedup, albeit at 
the cost of significant loss in resolution at the lower stages 
of the pyramid, thus resulting in noisier results. This 
framework then becomes an ideal candidate for a 
reconfigurable accelerator where different stages of the 
pyramid can be instantiated based on the environment one is 
operating in. If high throughput is a requirement, the 
accelerator can be dynamically reconfigured to instantiate 
more stages, while if a high priority navigation process is 
being carried out then three stages could be used. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 4: Saliency results with different spatial perturbations. (a)-(d): Original Images. (e)-(h): Saliency Results 

 
Figure 5: Quantitative Evaluation of AIM versus MR-AIM 

!
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4. RELATED WORK 
 
Early studies on foveation using the concept of multi-
resolution pyramid was carried out in [11] for low-
bandwidth video communication. Their work however 
looked at encoding the image itself in a more efficient way 
rather than look at it in terms of computing saliency. The 
Gaze Attention Fixation Finding Engine (GAFFE) model 
[12] builds on the foveation model of [11] to compute 
saliency in gray-scale images and arrives at various fixation 
points (not necessarily in the order carried out by the HVS). 
Another aspect to consider is that they run their model on 
the foveated (compressed) image rather then computing the 
fixations as an inherent part of the saliency model. A multi-
resolution foveation model was proposed in the context of 
saliency by using the phase spectrum of quaternion Fourier 
transform (PQFT) [13]. This was also in context of image 
and video compression rather than attempting to predict 
fixation points in a dynamic environment. A recent 
foveation-saliency approach in [14] was used to improve 
attention prediction under a quality assessment task. While 
the state-of-the-art computational models [1], [2], [3] use 
bottom-up features to compute visual attention, the HVS 
uses a combination of top-down decision making and 

bottom-up feature extraction to digest information coming 
through the ventral stream [15]. Thus, designing a 
biologically plausible system capable of predicting where to 
look next is a challenging task. We believe that our work is 
different from the point of view of answering this very 
question and the multi-resolution framework modeling the 
front-end of the HVS is a stepping-stone in that direction. 
 

5. CONCLUSIONS 
 
A multi-resolution framework for visual saliency is 
presented. The way the HVS operates is modeled using the 
framework, where resolution rolls of as one would move 
away from the point of fixation. Qualitative and quantitative 
comparisons were made with other state-of-the-art models. 
Apart from biological plausibility, we show significant 
computational benefits that would enable the design of next- 
generation autonomous systems driven by visual attention. 
Future work includes extending this framework by adding 
additional channels of saliency in the periphery and 
introducing top-down bias to drive foveation.  
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Figure 7: Qualitative comparison of Itti’s model (yellow circle 

shows focus of attention, AIM (red box shows maximum saliency 
score) and MR-AIM (red box shows maximum saliency score) at 

three different time instances captured from a video. 

Original Image AIM MR-AIM 

   

   

   

   

   
Figure 6: Qualitative Comparison of AIM versus MR-AIM. 

Column 1: From top to bottom the images are 512x512, 
1024x1024, 1600x1600, 1920x1920 and 2048x2048* (* = 

extrapolated). Column 2: AIM. Column 3: MR-AIM 
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