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ABSTRACT 

 

This paper introduces a new approach for finite-precision 

error modeling based on affine arithmetic. The paper 

demonstrates that there is a common hazard in affine arith-

metic-based error modeling methods described in the litera-

ture. The hazard is linked to early substitution of the signal 

terms that emerge in operations such as multiplication and 

division. The paper proposes postponed substitution com-

bined with function maximization to address this problem. 

The paper also proposes a modification in the error propaga-

tion process to enhance the error modeling accuracy. An 

existing word length optimization method is reproduced to 

evaluate the efficiency of this modification. The results 

demonstrate that the proposed modification can improve the 

hardware area results by up to 7.0% at the expense of negli-

gible complexity overhead. 

 

Index Terms— Fixed-point arithmetic, error modeling, 

precision analysis, Affine Arithmetic 

 

1.  INTRODUCTION  

 

Finite-precision error modeling is a key step in accuracy-

aware fixed-point design. Error models are essential for 

word-length optimization methodologies, which have been 

the subject of a large body of research in the last decade. 

Accuracy and computational complexity are the main factors 

for the evaluation of an error modeling approach. 

Many simulation-based and analytical techniques have 

been introduced in the literature for error modeling [1-3]. 

Interval arithmetic (IA) is a well-known analytical method 

which was originally invented to find the range of signals in 

a computational circuit [4]. The main drawback of IA is that 

it ignores the correlation among signals [3], [5]. Affine 

arithmetic (AA) is a preferable approach that addresses the 

correlation problem by taking signal interdependency into 

account. In AA, each signal is represented as a linear combi-

nation of certain primitive variables which stand in for 

sources of uncertainty. Fang et al. [3] and Lee et al. [6] in-

troduced AA-based error propagation methods for quantiza-

tion error modeling. Other works have tried to improve the 

AA-based method, but they typically fail to cover all features 

of the basic method [7]. 

This paper illustrates a common hazard in existing AA-based 

error modeling approaches and proposes a solution to ad-

dress it. The paper also suggests a modification of the propa-

gation process which can effectively improve error model 

accuracy. Improvements are demonstrated and quantified 

using a set of widely used case studies. 

Section 2 of this paper briefly reviews necessary affine 

arithmetic concepts. Section 3 describes existing error prop-

agation models and their shortcomings. Section 4 presents 

our proposed solution. Section 5 gives experimental results 

and comparisons, and Section 6 concludes the paper. 

 

2. AFFINE ARITHMETIC  

 

In affine arithmetic, the estimated value  ̂ of a signal x is 

represented by the sum of a constant x0 and a finite set of n 

uncertainty terms xiεi, as follows:  

 ̂                            [    ]. 

Each    element is an independent uncertainty factor of the 

total uncertainty of the signal. The estimated value of a 

signal x with specified range [         ] is represented in 

affine form by 

 ̂         , 

where 

   
         

 
      

         

 
   

The affine form for addition-subtraction is calculated by 

adding-subtracting the affine expression of the inputs. Multi-

plication is more complex due to the emergence of non-

affine terms in the result expression. The widely used solu-

tion is to replace these terms with an affine approximation 

that introduces a new uncertainty factor [3], [6], [8].  

The range of each signal is calculated from its affine rep-

resentation by finding the minimum and maximum values 

when the uncertainty factors are replaced by -1 or 1. 

In error modeling with AA, the quantization errors must 

be added to the affine forms. The quantized value xq of a 

signal x is represented in affine form as 

         
 , (1) 

where 

   
 {
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The    
 and     

terms correspond to the quantization error 

and fractional bit width of the quantized signal     respec-

tively. In Equation (1), we show two quantization approach-

es: truncation and round to nearest. With FB fractional bits, 

truncation and round to nearest cause a maximum error of 

    and       , respectively. To keep consistency with 

existing works, we use the round to nearest approach in the 

rest of this paper. Equation (1) shows a simplified version of 

the affine representation that is sufficient for subsequent 

calculations. A more detailed  treatment can be found in [3]. 

Using the affine expression from (1), the quantization er-

ror from addition-subtraction is obtained as follows: 

                              
    

   

              
    

    
                                                    (2) 

 where     {
                       

          
     

   

                                                                  
. 

 
From (2), we see that the total error at the output of an addi-

tion is equal to sum of errors of its operands added to the 

quantization error of the output signal. The δ is nonzero only 

when the output has more fractional bits than both operands. 

For multiplication, the error is: 

                      
     

     
    

   
                                (3) 

where     {
                         

     
      

 

                                                            
  

In a commonly used conservative approximation [3], [6], the 

x and y terms in (3) are replaced by the maximum absolute 

values of the x and y inputs that can be inferred from the 

range values.  

 

3. EXISTING ERROR PROPAGATION METHOD 

 

To compute the finite-precision error of a computational 

flow which is composed of consecutive elementary opera-

tions, an error propagation procedure is required.  

Fang et al. [3], Lee et al. [6] and Pu et al. [9]  presented 

the widely accepted reference methods for AA-based error 

propagation. As a main contribution, this paper identifies a 

common hazard that may arise in all error modeling ap-

proaches used in these works. We illustrate this hazard by 

applying Lee’s error modeling approach [6] on the example 

shown in Fig.1. The same problem emerges in Fang’s and 

Pu’s methods as well. Lee’s method omits the conditional 

terms of the error equation by assuming there is always a 

quantization step after each operation. In other words, the 

number of output fractional bits of the operations is always 

assumed to be shorter than the maximum number of mean-

ingful fractional bits that is produced by that operation. So, 

the error model for addition/subtraction becomes  

    
    

    
             

I1=[-1,1] I2=[-1,1]

_

×

_

y1

O

y2

 

Fig. 1. Circuit that calculates                . 

The input range values are shown in brackets. 

 

For multiplication it is 

    
     

     
    

   
           . 

Accordingly, the error models of the signals of Fig. 1 are 

obtained as follows: 

               

               

                                        

                       

                    . 

The hazard arises in the substitution of the signal terms that 

emerge in the multiplication expressions. Common ap-

proaches, such as Lee’s method, substitute these terms with 

the absolute value of the worst-case bound of the signals, 

regardless of the rest of the circuit. This has been claimed to 

be a conservative approximation. So, the    and    terms in 

the expression for     above are substituted by the value 1. 

Now, starting from the primary inputs, the error terms are 

substituted by their corresponding expression until the output 

error expression is obtained as follows: 

                                     

                           

                                            .  (4) 

Since the   elements are in the range of -1 to 1, the upper 

bound of the error at the output   is 

                                                .                     

The        term in (4) is small and is often disregarded 

[5],[3]. The incorrectness of the error expression in (4) can 

be easily shown by an example. If        , the output 

error expression becomes 

 ́                                        

                    , 

       ( ́ )                                   

                                                      , 
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which is larger than the value in (4) due to the contribution 

of the input quantization errors (    and    ). In fact, the 

early substitution of the signal terms in (4) causes incorrect 

cancellation in later stages. 

Cong et al. [5] used a more complex propagation method 

that does not generate the hazard. In this method, the signal 

terms are substituted with their corresponding affine repre-

sentation instead of worst-case approximation. In the exam-

ple of Fig. 1, the    and    terms in     expression are sub-

stituted with       and     , respectively. 

                                        . 

The products      and      are replaced by new uncertainty 

factors as follows: 

                                    . 

So, the output error expression is obtained as: 

                                               

                                            

                                               

                                    .                                                           (5) 

This is the correct error model for Fig. 1. The        term is 

neglected in Cong’s paper [5]. Although this method can 

address the mentioned hazard, we found that it also faces a 

significant issue. Cong’s method can occasionally fail to 

keep track of the correlation between new uncertainty fac-

tors. For example, applying this method on the circuits 

shown in Fig. 2, the following error expressions are obtained.  

             

             

             

           
                

         

                                              

           
                

         

                                               

    (          )  (           ) 

                                       
                                 
                                
          

    (           )  (          ) 

                                      
                              
                                 
            

          . 

Note that in order to simplify calculations, we do not take the 

quantization error of intermediate signals (       -   ) into 

account. 

A=[0,2] B=[0,2]

×

C=[0,2]

x1 x2

×

××

_
x3 x4

z
 

Fig. 2. Circuit that calculates                  .  

 

Fig. 2 calculates                   = 0. In 

a correct propagation approach, the quantization errors of the 

input signals should be cancelled in the subtraction operation 

before reaching the output   error expression. Hence, the 

correct output error expression is     . However, Cong’s 

method gives a different error expression due to the fact that 

this method fails to keep track of the correlation among new 

uncertainty factors. As illustrated by the example in Fig. 2, 

this issue can cause considerable overestimation of the error 

values.  

Another significant challenge of Cong’s method is the 

large number of uncertainty factors that it introduces in mul-

tiplication operations. This leads to high computational com-

plexity of the propagation process.  

 

4. PROPOSED APPROACH 

 

We propose a modified error propagation approach with two 

improvements. The first improvement addresses the short-

comings of the existing methods. The second improvement 

involves the propagation of conditional terms which can 

enhance the accuracy. 

 

4.1.  Postponed substitution 

 

An effective way to address the problems described in Sec-

tion 3 is to postpone the signal term substitution until the 

last stage of the propagation process. Applying this modifi-

cation to the circuit of Fig. 1, the    and    terms in    are 

not substituted by a value until the output error    is ob-

tained as:  

                                       

                                          . 

Now, for a conservative evaluation, non-constant coefficients 

of the error terms are approximated to their maximum abso-

lute values. For example, the        coefficient is approx-

imated to     |    |    applying      , while a 

value of 0 was calculated for this coefficient in Lee’s method 

due to early substitution. The upper bound error expression 
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of (5) is eventually obtained for the circuit of Fig. 1 using 

our method. This case study shows that although early sub-

stitution of signal terms simplifies the error propagation 

process, it may lead to an underestimation of error bounds 

and consequently inaccuracy in precision analysis. 

Applying this method on the circuit of Fig. 2 gives the 

correct result, i.e.,     . This shows that our method also 

addresses the overestimation issue of Cong’s approach.  

Solving the maximization function in the last stage forms 

the main complexity overhead of our approach. This over-

head increases with the number of signal terms that partici-

pate in a non-constant coefficient. 

 

4.2.  Propagation of conditional terms 

 

The second proposed improvement involves the conditional 

terms in error expressions. Existing methods assume that the 

quantization error is always introduced at the output of oper-

ations to eliminate conditional elements. Although this as-

sumption simplifies the error propagation process, it may 

introduce unnecessary error elements that eventually lead to 

overestimation. Our second improvement proposes avoiding 

this assumption by propagating the conditional terms in the 

same way as other elements.  

Applying this modification on the circuit of Fig. 1 gives 

the following upper bound error expression: 

                                    

     where       {
                                     

                                                          
 

                      {
                             (         ) 

                                                                   
 

                      {
                             (         ) 

                                                                 
. 

Experimental results in Section 5 demonstrate the effective-

ness of this modification on word length optimization. 

 

5. RESULTS AND COMPARISON 

 

We developed a word length optimization system to evalu-

ate the efficiency of the conditional term propagation. This 

system is a reproduction of the method proposed by Os-

borne et al. [8] and is implemented in MATLAB. The error 

models are given to the word length optimization process as 

input. Using a more accurate error model, the optimization 

process can potentially find shorter signal bit-lengths that 

still meet the requested output error bound. The shorter 

signals eventually lead to lower hardware cost during the 

hardware implementation. This section measures the hard-

ware cost reduction and optimization time overhead ob-

tained by using conditional term propagation in AA-based 

error modeling. For the experiments described in this sec-

tion, we have employed five well-known case studies which 

include some commonly used transforms and operators in 

the signal and image processing domains. 

Table 1. Comparing hardware area and optimization time with and 

without conditional term propagation  

Case Study 
# of 

Signals 

Area (slices) Opt. Time (s) 

M1* M2** Imp (%) M1 M2 

Degree-4 Poly 13 1234 1172 5.3 5.1 5.2 

B-Spline 15 719 691 4.1 3.5 3.5 

RGB to YCrCb 19 558 537 3.9 5.7 5.9 

2×2 Matrix Mult. 29 1939 1812 7.0 14.4 14.7 

DCT 8×8 55 5178 4902 5.6 127.3 131.1 

*M1: Without cond. term prop.     **M2: With cond. term prop. 

 

Lee et al. [6] described the case studies in detail. For 

hardware cost measurement, the case studies were modeled 

in VHDL. The polynomial approximation was implemented 

in general form, contrary to Lee et al. [6] who customized 

this approximation to a specific function. All experiments 

were performed on an Intel i7 3-GHz PC with 16 GB RAM. 

Designs were synthesized with Synplify 9.1 for a Xilinx 

Virtex 5 XC5VLX110 FPGA.     

Table 1 illustrates the hardware area cost and optimiza-

tion time for the five case studies. In these results, condi-

tional term propagation saves hardware area by up to 7.0% 

at the expense of negligible complexity overhead. Achieved 

hardware savings are significant regarding the competitive 

results in previous works in this area. Fig. 3 compares the 

hardware savings obtained in various degrees of polynomial 

approximation. These results show a slight growth in hard-

ware savings by increasing the application size. The re-

quested output precision was fixed to 8-bits in all reported 

experiments. 

 

6. CONCLUSION 

 

We have demonstrated a common hazard in existing AA-

based finite-precision error modeling methods using two 

counter examples. We have proposed postponed substitution 

approach to address this hazard. Furthermore, we have pro-

posed conditional term propagation to enhance error model-

ing accuracy. The efficiency of our approach was evaluated 

through a set of case studies. The results show that the ap-

proach can yield significant hardware savings with negligi-

ble complexity overhead.  
 

 
Fig. 3. Hardware area savings for various polynomial degrees. 
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