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ABSTRACT

Recent research presents a technique to enumerate all
valid assignments of “twiddle factors” for power-of-two fast
Fourier transform (FFT) flow graphs. Brute-force search em-
ploying state-of-the-art Boolean satisfiability (SAT) solvers
can then be used to find FFT algorithms within this large
solution space which have desirable characteristics. Surpris-
ingly, this approach has discovered FFT algorithms requiring
fewer operations than the split-radix algorithm even when all
twiddle factors are nth roots of unity.

This paper reviews and then extends this prior research
to examine fast discrete convolution algorithms when imple-
mented via FFT and inverse FFT (IFFT) algorithms. In
particular, we find that the combination of FFT and IFFT
algorithms in fast convolution permits greater freedom when
selecting valid twiddle factor assignments. We exploit this
freedom and use SAT solvers to find new fast convolution
algorithms with the lowest operation counts known.

Index Terms— Fast Convolution, Fast Fourier Trans-
form, Operation Count, Arithmetic Complexity, Satisfiability
Solver

1. INTRODUCTION

Convolution, an integral that expresses the amount of over-
lap of one function f as it is shifted over another function g,
is a foundational concept in mathematics. Its applications
include filtering, artificial reverberation, image processing,
probability distribution, computation of prime length FFTs,
and polynomial multiplication. Given this wide range of ap-
plication, it is vital to develop and study fast and efficient
algorithms to compute convolution.

When computing convolution, the circular convolution
theorem is commonly applied to transform the problem into
one of computing the Fourier transform and its inverse,

f ∗ g = F−1{F{g} · F{h}}. (1)

For the discrete case involving sequences of finite length n,
this can be expressed in terms of the fast Fourier transform
as,

y(n) = IFFT[FFT[g(n)]FFT[h(n)]]. (2)

Consequently, the fast Fourier transform and its inverse are
central to implementing fast circular convolution algorithms.

In terms of lowest arithmetic complexity as measured by
the fewest floating point operations, or FLOPs, the split-
radix[1][2][3] FFT held the record for more than 30 years

and requires 4n log2 n − 6n + 8 FLOPs for a size-n FFT
where n is some power of two, n = 2m. In 2004 Lundy
and Van Buskirk[4] demonstrated improvements to the split-
radix operation count by using “twiddle factors” or multi-
plication coefficients that are not nth roots of unity. Frigo
and Johnson[5] generalized Van Buskirk’s pioneering work
in the context of optimizing the conjugate-pair split-radix
algorithm[6]. Bernstein[7] then described a version of John-
son’s algorithm, which is distinct from Van Buskirk’s, in
terms of algebraic twisting and named it the tangent FFT.
These new FFTs, which we will refer to collectively as tan-
gent FFTs, exhibit a modest (∼ 5.6%) reduction in FLOP
count when compared to the split-radix, requiring roughly
34
9
n log2 n operations rather than the previous 4n log2 n −

6n + 8. More recently, SAT-based brute-force search[8] was
used to find FFT algorithms with lower FLOP count than
the split-radix but higher FLOP count than tangent FFTs
due to the constraint that twiddle factors must be nth roots
of unity.

Assuming a goal of minimizing FLOP count in a fast
convolution algorithm, utilizing one of the new tangent
FFTs[4][5][7] will produce the best known result. This
paper asks whether this bound can be lowered by employ-
ing SAT-based brute-force techniques[8] when considering
fast convolution’s two FFTs and inverse FFT in concert.
More precisely, for n-tuple weights Wg(n),Wh(n),Wy(n), do
weighted FFT and inverse FFT algorithms exist such that

y(n) = IFFT[Wy(n)(Wg(n)FFT[g(n)])(Wh(n)FFT[h(n)])]
(3)

is a valid fast convolution and requires fewer FLOPs than
the best known. All multiplication is pointwise. An n-tuple
weight W (n) consists of individual weights, (ωa

n, ω
b
n, . . . , ω

z
n),

where ωn represents the complex nth root of unity e−i 2π
n .

And in order to be a valid fast convolution, the pointwise
multiplication Wg(n)Wh(n)Wy(n) must equal (1, 1, . . . , 1).

This paper does find and present fast convolution algo-
rithms with lower operation counts than previously known.
FLOP count is minimized as it is a clearly defined objective
to communicate this research as well as to establish lower
FLOP bounds on some instances of this open problem. Since
the SAT-based search employed is exhaustive, further FLOP
count improvement can only be achieved by studying algo-
rithms outside those captured by this fairly broad formula-
tion. Furthermore, the techniques presented are general, and
can be used to search for fast convolution algorithms meeting
objectives other than lowest operation count.
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Fig. 1. Size-8 Radix-2 FFT Flow Graph

2. BACKGROUND

The discrete Fourier transform (DFT) is defined as

X(k) =

n−1∑
j=0

ajω
jk
n . (4)

The DFT requires O(n2) addition and multiplication floating-
point operations on real numbers, or FLOPs, when directly
implemented as a computer algorithm. Because of this high
arithmetic complexity, the fast Fourier transform (FFT), pop-
ularized by Cooley and Tukey[9] in 1965 and which requires
only O(n logn) FLOPs to implement the DFT, is used in
practice.

2.1. A Flow Graph Representation of the FFT

Signal-flow graphs are a widely used formalism to represent
and analyze FFTs[10][11]. Such flow graphs are central to
this paper and are described next.

The flow graph implied by a size-8 FFT, n = 8, is
shown in Figure 1. The input operands of the FFT, labeled
a0...an−1, are shown at the top and the output values, la-
beled X(0)...X(n− 1), are shown at the bottom. Each node
represents complex addition and/or multiplication opera-
tions applied to its input operands to generate its output
values. A node first sums both input operands, when two
input operands are available, to create an internal weighted
sum. Next, this internal sum is weighted by some ωtfp

n , an
nth root of unity. This multiplication constant is commonly
referred to as a twiddle factor, and only integer powers tfp
for left and right twiddle factors, respectively, are shown per
node in Figure 1.

The choice of twiddle factor values is the main differenti-
ating factor in terms of FLOP counts among common power-
of-two FFTs. Multiplication by ±1 or ±i is free, multiplica-
tion by ±

√
i or ±

√
−i requires 4 FLOPs, and multiplication

by any other nth root of unity takes 6 FLOPs. FFTs with
lower arithmetic complexity, such as the split-radix[1][2][3]
algorithm, use an assignment of twiddle factors that reduces

the total number of required FLOPs. For example, a node’s
left and right twiddle factors will be the same or differ by
−1, a free multiplication, so that at most only one total com-
plex multiplication is required per node. To further illustrate,
the twiddle factors in the final row of nodes are usually free
multiplications by ω0

n = 1. Such FFT flow graphs, with no
addition in the top row of nodes and no multiplication in the
bottom row of nodes, clearly require the expected O(n logn)
FLOPs.

A path from an input operand aj to a result value X(k)
must apply the correct weight to aj to implement a valid
DFT. This must be true for all paths. In Figure 1, the only
path from a3 to X(2) is in bold. Along this path, the total
weight ω6

8 = ω0
8ω

4
8ω

2
8ω

0
8 is applied to a3. For k = 2, this is

the weight required on a3 by Equation 4.

2.2. Generating and Searching Families of FFTs

In the recent paper[8], the authors developed and formalized
this path-based analysis of FFT flow graphs. Each node in a
size-n FFT flow graph can be marked with a weight stride
invariant. This invariant assignment is independent of any
particular FFT algorithm implemented by the flow graph and
can be used to generate the family of all FFTs realizable by
the flow graph where all twiddle factors have modulus one.

In Figure 2, we can trace how input operands a1, a3, a5

and a7 are combined to form the internal sum for the node
labeled G, a1ω

0
8 + a3ω

2
8 + a5ω

4
8 + a7ω

6
8 . The key observa-

tion is that the two input operands summed at this node,
a1ω

0
8 + a5ω

4
8 from the left and a3ω

2
8 + a7ω

6
8 from the right,

must have an integer difference (mod n), or weight stride, of
2 between the powers put on ωn to form the weights on any
two successive aj in order to create a correct partial sum to
support results X(1) and X(5). This is because once com-
bined by a sum, weights on individual aj cannot be inde-
pendently changed in these flow graphs. Notice that the
weight stride between successive terms a1, a3, a5 and a7 in
X(1) = a0ω

0
8+a1ω

1
8+a2ω

2
8+a3ω

3
8+a4ω

4
8+a5ω

5
8+a6ω

6
8+a7ω

7
8

is 2, although the actual weights have changed from those
seen in the internal sum of node G. Likewise, the weight
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Fig. 2. Weight Stride in a Size-8 Radix-2 DIF FFT Flow Graph

stride between successive terms a1, a3, a5 and a7 in X(5) =
a0ω

0
8 +a1ω

5
8 +a2ω

2
8 +a3ω

7
8 +a4ω

4
8 +a5ω

1
8 +a6ω

6
8 +a7ω

3
8 , which

is also created using the internal sum of node G, is 2 (mod
8). Since the weight stride is fixed by a sum, it must be per-
manently and correctly set at the time of the sum to support
correct final result values. Hence, the invariant weight stride
for node G is, and can only be, 2.

Once all invariant weight strides are determined through
graph analysis, there is a simple linear algorithm to generate a
valid set of twiddle factors. Figure 3 shows a size-8 FFT flow
graph where each node is marked with its invariant weight
stride at its center. First, we randomly assign a weight for the
aj with lowest index j at each node. For the node G in Figure
3, we arbitrarily picked 5, which is notated as an underlined
integer in the top left corner of node G. A property of these
flow graphs is that the incoming left arc always has the aj

with lowest index j. Now, since the weight stride for node G is
2, the weight of the aj with lowest index j present on the right
incoming arc must be 7 = 5 + 2. This random assignment is
repeated for every node in the flow graph. Next, we examine
the difference in weights between parent and child nodes to
determine the required twiddle factors. For example, node H
is a child of node G, and its expected weight on that path
is 3. Therefore, the twiddle factor for the path from H to
G must be 6 = 3 − 5(mod8). This twiddle factor appears in
the lower right corner of node G. In this example, 5 is used
as it is now the weight of the aj with lowest index j after
the addition of the two incoming operands of node G. This
computation is repeated for all nodes to determine all twiddle
factors. Finally, the same bold path in Figure 1 appears in
bold in Figure 3. The total weight of ω6

8 = ω5
8ω

1
8ω

5
8ω

3
8 is

the expected final weight on a3 for X(2), even though the
individual weights differ from Figure 1.

With this new way to generate all valid twiddle factor as-
signments for a FFT flow graph, we can compute the number
of valid FFTs that exist for a given flow graph. A power-
of-two size-n flow graph’s solution family has cardinality
2n log2 n log2 n, and is the number of valid FFTs realizable by
the given flow graph. For example, a size-256 flow graph has
216384 unique twiddle-factor assignments that lead to valid

FFTs. You’ll agree this is a large number when reminded
that the estimated number of atoms in the universe is roughly
2264. Yet this number is very small when compared to all
valid and invalid nth root of unity assignments possible for
twiddle factors, 234816. Thus, for a size-256 flow graph, there
is just a 1 in 218432 chance of guessing correct twiddle factors.
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Fig. 3. Random Size-8 Radix-2 DIF FFT Flow Graph

To search for desirable instances, such as those re-
quiring the fewest FLOPs, in this large family of valid
FFTs, we cast the search as a Boolean satisfiability (SAT)
problem[12][13][14][15]. In particular, to easily accommodate
integer arithmetic (mod n), we employed satisfiability modulo
theory (SMT) solvers for quantifier-free finite-precision bit-
vector arithmetic (QF BV)[16][17][18][19][20][15]. Although
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a näıve casting of the problem to SMT is straight-forward,
sophisticated partitioning, symmetry reduction and local
constraints, all proven to not exclude any fewest FLOPs
solutions, are required. These techniques are detailed in the
paper[8] and are similar in character to techniques used in
the semiconductor industry to formally verify correctness of
large logic circuits[21], although properties unique to FFT
flow graphs are exploited.

With this SMT-based search, FFTs of size-256 and size-
512 that require fewer FLOPs than the best known split-
radix, when all twiddle factors are modulus one, are found.
Size-256 FFTs that require 6616 FLOPs, compared to 6664
FLOPs for the split-radix, exist. Size-512 FFTs that require
15128 FLOPs, compared to 15368 FLOPs for the split-radix,
also exist and are found. Furthermore, by brute-force proof,
no lower arithmetic complexity solutions exist for the size-256
FFT under the constraints of the fixed flow graph structure
and all twiddle factors of modulus one. Finally, to illustrate
the generality of this technique, FFTs of size-64 that require
only 3 unique twiddle factors, potentially simplifying the im-
plementation of multiplication in hardware, are found. Wit-
ness code examples[22] of all these cases are available on the
internet.

3. FAST CONVOLUTION ALGORITHMS

As the first step in searching families of fast convolution al-
gorithms, the techniques summarized in Section 2.2 must be
modified to find weighted FFTs (e.g. Wg(n)FFT[g(n)] as
seen in Equation 3) with lower FLOP count than standard
FFTs, if they exist. To do this search, two modifications to
the FFT search must be made. First, multiplications occur-
ring in the bottom row of nodes in the FFT must incur no
cost. In standard FFTs, it is never beneficial to include a
multiplication here. In fact, prior work[8] proves this is never
beneficial in terms of FLOP count and uses this to partition
the search. Intuitively, these final multiplications “undo” any
residual weight on base that may be present so that the FFT
is indeed correct. These multiplications will not be needed
in the final fast convolution as Wg(n)Wh(n)Wy(n) will equal
(1, 1, . . . , 1). Finally, since the search partitions must include
nodes from the last row, each partition is larger than in prior
FFT-only work[8], and hence only FFT flow graphs up to
size-128 are feasible to search.

As seen in Table 1, we implemented the two modifications
described and found weighted FFTs with lower FLOP counts
than standard FFTs. For a size-64 weighted FFT, 3.6 seconds
of compute time on a 64-bit Intel Core i7 Linux machine
was required to find a size-64 solution and 4.6 seconds to
prove that no better solution exists. For a size-128 weighted
FFT, 30 minutes of compute time was required to find a 2744
FLOP solution and 28 hours to prove that no solution with
fewer FLOPs exists. Compute time exceeded our 36 hour
limit when searching larger FFTs. Witness algorithms[22]
are posted on the internet.

Table 1. FFT FLOP Counts
FFT n = 64 n = 128
Split-Radix 1160 2824
Tangent 1152 2792
Weighted 1136 2744

The weighted inverse FFT expects certain weights to be
present on some of its input operands. This is symmetrical to
the weighted FFT where weights are present on some output
operands. Because of this inherit symmetry, the lowest FLOP
counts for the weighted inverse FFT are identical to those in
Table 1 and search compute times are similar.

A common use of fast convolution algorithms, such as seen
in Bluestein’s FFT algorithm and some types of filters, will
have constant value input operands for h(n) in Equation 2.
Hence, FFT[h(n)] is precomputed and reused repeatedly to
reduce computation. Likewise, Wh(n)FFT[h(n)] from Equa-
tion 3 may also be precomputed. Note that in this case, it
does not matter what Wg(n) and Wy(n) are, as values for
Wh(n) can always be picked such that Wg(n)Wh(n)Wy(n)
will equal (1, 1, . . . , 1). For this case, we save 32 FLOPs and
96 FLOPS for size-64 and size-128 fast convolution algorithms
respectively, when compared to the best known alternative
using tangent FFT and IFFT algorithms.

Another constraint we can apply to the formulation is
to minimize the elements in W (n) that are some weight ωn

other than 1. This can be done by adding up all such weights
in the SAT model and requiring that this sum be less than
a specified bound. This bound is iteratively lowered until
the model becomes unsatisfiable. When we do this for the
size-64 FFT, we find that 16 of the 64 output operands must
have a weight to achieve the lowest possible FLOP count of
1136. Interestingly, all 16 weights can be the same, and there
are only two possibilities when all the weights are the same.
These two possibilities happen to be inverses, ωa

nω
−a
n = 1, and

consequently a fast convolution algorithm can be created with
an unweighted IFFT. In this case, the savings are exactly the
same as seen before.

The problem becomes harder if we allow greater freedom
in the number and values of weights. If we do not minimize
the elements in W (n), we do see a great number of possi-
bilities. We iterated through tens of unique sets of weights
before stopping. Section 2.2 discussed the enormous num-
ber of valid FFTs, even with the same FLOP counts, and we
believe the same is true for W (n). Furthermore, if we relax
the constraint to minimize total FLOP count in an FFT or
IFFT, it will also allow greater freedom in the possibilities for
W (n). What we can say, at least for a size-64 fast convolu-
tion algorithm, is that the lowest operation count is between
32 and 48 FLOPs (best possible savings for IFFT and both
FFTs) lower than alternatives using tangent FFTs with the
lowest known FLOP counts.

4. CONCLUSIONS

This paper extended and employed novel SAT-based brute-
force search techniques to find fast convolution algorithms
with the lowest known operation counts. Witness algorithms
are posted on the internet[22]. More importantly, it estab-
lished bounds for the lowest possible FLOP counts in fast
convolution algorithms given the constraints of the formula-
tion. One must look outside of this defined solution space to
further lower the operation count. For example, the under-
lying graph structure must change, or multiplication coeffi-
cients that are not nth roots of unity must be allowed. Future
work will explore expanding the solution space, as well as for-
mulating search objectives other than minimizing operation
count.
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