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ABSTRACT
Serial pruning of turbo interleavers have been proposed in the litera-
ture as a simple scheme to provide more flexible codeword lengths.
In this paper, we prove two important attributes about serially pruned
interleavers. First, we show that serially pruned interleavers inherit
the content-free property of their mother interleaver, and hence they
remain parallelizable. An example serially-pruned QPP LTE in-
terleaver is parallelized. Second, the minimum spread factor of a
serially-pruned interleaver closely matches the spread factor of its
mother interleaver for small pruning gaps with minimal impact on
BER performance, and degrades gracefully with the pruning length.
Simulation results of practical pruned LTE turbo interleavers demon-
strate the graceful degradation of spread characteristics and BER
performance of serially pruned interleavers.

Index Terms— Contention-free interleavers, serially-pruned in-
terleavers, turbo codes, LTE, QPP interleavers.

1. INTRODUCTION

Interleavers are devices that reshuffle a sequence of symbols accord-
ing to some permutation [1]. Recently, they have been most com-
monly employed in the context of turbo codes. A class of computa-
tionally efficient interleavers are deterministic interleavers [2,3] with
simple address generation expressed in closed-form.

Many practical deterministic interleavers however are limited to
a small set of discrete lengths. Pruning is a technique used to support
more flexible block lengths [4–6]. Communication standards [7–9]
typically vary the block length depending on the input data rate re-
quirements and channel conditions. To support any length β, in-
terleaving is done using a mother interleaver with smallest length
k>β such that outlier interleaved addresses ≥ β are excluded. The
so-called inliers permutation statistic [10, 11] I(π, k;α, β) enumer-
ates all integers between 0 and α − 1 that map to indices less than
some integer 0 < β < k in the permuted sequence.

However, arbitrary pruning alters the spread characteristics of
the mother interleaver. It also creates a serial bottleneck since in-
terleaved indices become address-dependent, and hence permuting
streaming data in parallel on the fly is no longer practically feasi-
ble [12].

A serially pruned interleaver (SPI) of size α < k and pruning
length β < k, with α < β, is defined by

◦
π : D → R, x 7→ y =

◦
π(x) =π(p(x)), where |D|= |R|=α, such that: 1)

◦
π(x)<β, and

2) p(x), x+∆x is the pruning function where ∆x is the pruning
gap of x defined to be the minimum ∆ ≥0 such that I(π, k;x+∆,
β)=x (i.e., for j=0, · · · , x+∆x−1, π(j)<β is satisfied exactly x

times). The domain and range of
◦
π are D= [α] and R=π(p([α])).

If this gap can be efficiently computed, then pruned interleaving can
be parallelized by windowing using the minimal inliers and parallel
pruning algorithms in [10]. Also this gap is used to characterize the
minimum spread of a SPI as shown later.

Serial pruning is valuable in turbo coding applications because
of the flexibility it gives in tuning the codeword length. Typically, in
a communication system employing adaptive modulation and cod-
ing, only a small set of discrete codeword lengths k are supported.
Bits are either punctured or filled in to match the nearest supported
length. For a pruned interleaver

◦
π of length β to be useful, it is de-

sirable to have the following characteristics: 1) It does not require
extra storage memory to store the pruned indices, 2) pruning pre-
serves the contention-free property [13, 14] of its mother interleaver
(if present), and 3) its spread factor [15] degrades gracefully with the
number of pruned indices g, k−β, and hence the impact on BER
performance is limited.

Obviously serial pruning satisfies the first property. The contri-
bution of this paper is that we prove that serial pruning also satisfies
the other two properties. In particular, we show that serially pruned
interleavers inherit the content-free property of their mother inter-
leaver, and hence they remain parallelizable. This is addressed in
Section 2. Furthermore, by deriving a lower bound on the minimum
spread of a SPI, we show that spread factor still matches closely the
spread factor of its mother interleaver for small g. This is treated
in Section 3 together with simulation plots that confirm this result.
The reader is referred to our earlier work for more details on pruned
interleavers, their characteristics, and associated parallel pruning al-
gorithms and architectures in [10, 11].

2. CONTENTION FREE PROPERTY

A permutation of length k=W·M in general is said to be contention-
free [13] with degree M =2m, if an array of k data elements stored
in one set of M read memory banks, each of size W = 2w, can be
permuted and written into another set of M write memory banks,
such that at each step, M data elements are read in parallel from
the M read banks and written in parallel into the M write banks
without reading or writing more than one element from/to any bank
(see Fig. 1a). Data is stored sequentially in the read banks such
that linear address i = j+ tW corresponds to location j in bank
t= bi/W c, where 0≤ j <W and 0≤ t <M . To permute any set
of M data entries at linear addresses j, j+W, · · · , j+(M−1)W in
parallel, the contention-free property stipulates that

B (π(j+tW );W,M) 6=B (π(j+vW );W,M) , (1)
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Fig. 1: 8-way parallel contention-free mapping for (a) an unpruned, and (b) a pruned QPP map π(j) = f(j) mod k with f(j) = 7j + 16j2,
k=32, α=β=22,W =4, and M=8.

for all 0 ≤ j < W and 0 ≤ t 6= v < M , where the bank ad-
dressing function B() is defined to be either B(i;W,M) ,

⌊
i
W

⌋
or B(i;W,M) , xmod M . This is a more general condition
than [13], and effectively uses either the m most or least significant
bits (MSBs/LSBs) of π(j+tW ) as a permuted bank address.

Figure 1a illustrates the contention-free property of a quadratic
permutation polynomial (QPP) π(j)=7j + 16j2 (mod k) for k=
32,W = 4, and M = 8, in the context of turbo decoding [13,
14]. Eight constituent a-posteriori probability (APP) decoders oper-
ate in parallel to decode a codeword by reading log-likelihood rations
(LLRs) values in parallel from M = 8 banks each of size W = 4,
and writing QPP-permuted LLR values in parallel to the write banks
without contention.

It is easy to show that the contention-free property extends be-
yond QPP permutations of degree 2 to the class of polynomial-based
permutations [16, 17] of the form π(j) = f(j) (mod k), where
f(j) =

∑d
i=0 aij

i is a degree-d polynomial with appropriately cho-
sen coefficients ai over the ring of integers modulo k. To prove this,
we select the bank addressing function to be B(i;W,M),

⌊
i
W

⌋
, so

that the m MSBs in the address designate a permuted bank address,
and prove that (1) holds. We can write f(j) as

f(j) = k

⌊
f(j)

k

⌋
+ π(j)

Then for any W that divides k, we have f(j) = π(j) (mod W ).
Therefore,

π(j) = W

⌊
π(j)

W

⌋
+ (π(j) mod W )

= W

⌊
π(j)

W

⌋
+ (f(j) mod W ) (2)

Now since f(j) is a polynomial function in j, we have for any t

f(j + tW ) = f(j) (mod W ) (3)

For distinct windows t and u, we have π(j + tW ) 6= π(j + uW )
since π is a permutation, which implies using (2) and (3) that⌊

π(j + tW )

W

⌋
6=
⌊
π(j + uW )

W

⌋
Furthermore, the bit-reversal permutation (BRP) [10] πn(j) on n
bits [10] is contention-free as well for any k=2n,M=2m,W =2w,
where n = m+w and m < n. The proof is based on the fol-
lowing property of bit-reversal permutations [10]: πn(j + tW ) =

M ·πw(j)+πm(t), where πw(j) and πm(j) are bit-reversal permu-
tations on w and m bits, respectively. Then, for any pair of distinct
windows t, u, we have πn(j+tW ) 6= πn(j+uW ), from which we
obtain

M · πw(j) + πm(t) 6= M · πw(j) + πm(u) (mod M),

for j = 0, 1 · · · ,W −1. Hence, πm(t) 6= πm(u) (mod M), and
thus the m LSBs designate a permuted bank address.

Next, applying an arbitrary pruning to a permutation to shorten
its length to β < k does not in general preserve its contention-
free property. However, we show next that serial pruning does in-
deed preserve this property, and a contention-free pruned permuter
can be designed as shown in theorem 1 below. First, it is impor-
tant to note that the serial-pruning map p(i) = i+∆i itself is con-
tention free. To show this, take two addresses i1 = j+ t1W and
i2 = j + t2W that correspond to banks t1 and t2 > t1. Then
b(j+t1W+∆i1)/W c 6= b(j+t2W+∆i2)/W c for any 0≤ j <W
since p(·) is monotonically increasing and hence ∆i2≥∆i1 .

Theorem 1. Any serially-pruned, contention-free permutation (in-
terleaver) remains contention free after pruning.

Proof. One scenario is to insert zero filler bits in the pruned posi-
tions while storing the data sequentially in memory across the banks.
This requires comparing π(j) with β serially for every j before writ-
ing to memory. Hence the contention-free property applies for the
pruned interleaver across all the banks if the mother interleaver is
contention-free.

Another scenario is to store the data across the banks without
filler bits as shown in Fig. 1b. To interleave properly, we need to
keep track of the inliers that fall within each window. First, since
the number of inliers up to window t is ∆(t+1)·W = I(π, k; (t +
1) · W,β), data located between address ∆t·W and ∆(t+1)·W −1
are stored sequentially in bank t. We know that addresses j, j+W,
· · · , j+ (M −1)W map to distinct windows under π. Address j
in window t, which might be pruned, actually corresponds to the
unpruned address j+tW−∆(j, t), where ∆(j, t) is defined as:

∆(j, t)=


∆t·W , if j=0;
∆(j − 1, t), if j>0, πn(j + tW )<β;
∆(j − 1, t) + 1, if j>0, πn(j + tW )≥β.

(4)

with initial condition ∆0 = 0. Then, for 0≤ j <W and 0 ≤ t 6=
v ≤M , we have
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B
(◦
π(j+tW−∆(j, t));W,M

)
=B(π(j+tW );W,M)

6= B(π(j+vW );W,M)=B
(◦
π(j+vW−∆(j, v));W,M

)
Hence a serially-pruned interleaver is contention-free when the
banks are accessed sequentially using a counter from j = 0, 1, · · · ,
W−1, if the mother interleaver is contention free.

In Fig. 1b, the theorem is applied to the QPP of Fig. 1a after
serially pruning it to length β = 22 in order to permute its entries
in parallel without contention when accessing the memory banks.
Eight APP decoders are still included in the figure, where it is as-
sumed that the hardware can be reconfigured on the fly to decode
codeword of any pruned length k/2 < β ≤ k. Pruned entries in
the memory banks are marked as �. Each read memory bank t is
initialized with the appropriate ∆(j, t) using (4), and accessed by
a counter j that runs from 0 to W −1. When reading from bank
t at step j, the actual address corresponds to j+ tW −∆(j, t). If
π(j+ tW ) < β, the read is successful. Otherwise, the location is
pruned, reading from bank t is stalled and ∆(j, t) is incremented.
At step j, at most 6 APP decoders operate and perform 6 parallel
reads from the memory banks. The generated LLR values from the
decoders are written in parallel in pruned QPP permuted order in the
write memory banks in 4 steps.

The pruning gaps in (4) can be computed efficiently using the
Minimal Inliers algorithm in [10] together with any scheme to enu-
merate the inliers depending on the permutation at hand. Efficient
schemes to enumerate inliers of LPPs, BRPs, and 2D interleavers
have been treated in our earlier work (see [10, 11]). The implica-
tions are that serially-pruned contention-free interleavers are paral-
lelizable at a low implementation cost using the proposed schemes.
When coupled with windowing techniques to parallelize the con-
stituent APP decoders, a turbo decoder can then be efficiently par-
allelized to meet throughput requirements in 4G wireless standards
and beyond.

It is worth noting that pruning can also be employed to design
more efficient radix-2 FFTs by eliminating redundant or vacuous
computations when the input vector has many zeros and/or when
the required outputs may be very sparse compared to the transform
length. Assume in-place FFT computations using a set of butter-
flies that compute the final outputs in a set of memory banks in bit-
reversed order. We showed above the BRP is contention-free. Hence
the last FFT stage for bit-reversal re-ordering can be parallelized.
With pruning, the BRP stage can still be parallelized. In fact, a sim-
ilar memory architecture to that in Fig. 1 can be employed to this
effect. The details are omitted due to lack of space.

3. BOUND ON MINIMUM SPREAD

The spread factor of an interleaver is a popular measure of merit
for turbo codes [15]. In this section, we consider the impact of
serial pruning on the spread characteristics of an interleaver. Let
the spread measures of a mother interleaver π and a serially pruned
interleaver

◦
π associated with two indices i, j be denoted by S(i,

j) = |π(i)−π(j)|+ |i−j| and Sp(i, j) = | ◦π (i)− ◦
π(j)|+ |i−j|=

|π(p(i))−π(p(j))|+ |i−j|, respectively. The minimum spreads
of π and

◦
π are defined as Smin , mini,j<k S(i, j) and Sp,min ,

mini,j<β Sp(i, j), i 6= j. We prove in the following theorem that
Sp,min remains close to Smin when the number of pruned indices
g,k−β is small.

Theorem 2. The minimum spread of a serially-pruned interleaver
of length β is at least
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Fig. 2: Minimum spread of pruned QPP interleavers in LTE.

Sp,min ≥
Smin

(1 + γ + g/k)t
(5)

where γ is a small positive constant and

t=− log(1−γ−g/k)/ log(1+γ+g/k).

The proof relies on the fact that Sp,min + |p(i0)−p(j0)| −
|i0−j0| ≥ Smin, where i0, j0 are such that |π(p(i0))−π(p(j0))|+
|i0−j0| = Sp,min. The difference D , |p(i0)−p(j0)|−|i0−j0| is
upper bounded as D≤ p(j0)−j0, assuming j0 > i0, since p(·) is a
monotonically increasing function. Since i0, j0 cannot be separated
by more than Sp,min−1 positions, we need to find the maximum of
p(j0)−j0 when j0 =Sp,min. This is equivalent to finding the maxi-
mum expansion of an interval of length Sp,min such that it contains at
least Sp,min inliers. Using the Minimal Inliers algorithm from [10],
together with the fact that the minimum number of αβ-inliers I(π,
k;α, β) and the maximum number of αβ-outliers O(π, k;α, β) in
an interval with α < β, are bounded as

αβ/k − c1 < I(π, k;α, β)

O(π, k;α, β) < α− αβ/k + c1

where c1 is a constant, this expansion leads to finding the minimum
t≥ 0 that satisfies Sp,min(1+γ+g/k)t(1−γ−g/k)≥Sp,min, from
which (5) follows. For example, the QPP interleaver π(j) = 63j+
128j2 (mod 2048) has Smin =64 and γ=0.076. If g=20 positions
are pruned, then Sp,min≥58. In fact, the actual Sp,min is 62.

Figure 2 plots the minimum spread of serially pruned QPP in-
terleavers as a function of g, for several mother QPP interleavers.
The lower bound in (5) is plotted as well. The length k, minimum
spread Smin and constant γ of the mother interleavers are shown in
brackets. As shown, Sp,min of the pruned interleavers remains very
close to Smin when up to g=2Smin indices are pruned, and the lower
bounds predicted by (5) are rather tight.

To assess the impact of serial pruning on error-correction per-
formance, the BER of 3GPP LTE turbo codes employing serially
pruned QPP interleavers were simulated over an AWGN channel,
assuming BPSK modulation and log-MAP decoding with up to 6 de-
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Fig. 3: BER of LTE turbo codes with pruned QPP interleavers: (a) k=2048 and (b) k=4096.

coding iterations. 500,000 frames were simulated. Figure 3a shows
the results using the LTE QPP mother interleaver π(j)=31j+64j2

(mod 2048) with k=2048 and Smin =64. Eleven interleavers were
derived from this mother interleaver whose lengths are indicated in
the figure. Also shown for comparison are results for two other QPP
interleavers of lengths 2016 and 1664 that are supported in LTE (the
other 9 lengths are not supported). In almost all cases, the pruned
interleavers perform very close to, or even outperform, the QPP in-
terleavers. Figure 3b shows the results for a length 4096 QPP mother
interleaver with Smin =80, and 4 serially pruned interleavers with the
indicated lengths. All 4 pruned interleavers outperform the mother
interleaver, except one which shows an error floor at 1.5dB. Also
compared are four QPP interleavers of similar lengths that are sup-
ported in LTE. Again the pruned interleavers outperform or closely
match these QPP interleavers.
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