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ABSTRACT 
 
In this paper, particle state compression scheme is proposed 
together with its architecture for centralized implementation 
of particle filters. In the scheme, state values are processed 
in original bit-width, stored in a compressed way and 
recovered before sampling of next iteration. The advantage 
of the scheme is that particle states memory requirement can 
be greatly reduced while the trade-off is the deviations 
between original and recovered states introduced by the 
process. A case study in Nearly Constant Turn (NCT) 
scenario shows that while achieving the same level of 
filtering accuracy, proposed scheme can save up to 49.69% 
memory overhead for storing particle state values compared 
to traditional realizations. 
 

Index Terms—particle filters, compression scheme, 
memory-efficient, implementation. 
 

1. INTRODUCTION 
 
In nonlinear/non-Gaussian Bayesian state estimation pro-
blems, particle filter (PF) [1] based on sequential Monte 
Carlo method outperforms traditional extended Kalman 
filter (EKF) and has gained popularity in fields including 
signal processing, computer vision and navigation [2, 4]. 
The key idea is to recursively approximate the probability 
density function (PDF) using a set of random samples by 
sampling, weight calculation and resampling steps. Due to 
its high computational complexity nature, dedicated 
hardware is a more promising solution other than software 
when implementing PFs. [3] studies the effect of finite 
precision processing in hardware implementation and shows 
that long bit-width is needed to achieve satisfying filtering 
performance. The resulting hardware complexity and 
considerable memory overhead all present challenges for a 

more efficient design. Previous works made great efforts on 
algorithmic [5-7] and architectural [5, 8, 9] level of particle 
filtering while the astonishing memory overhead for particle 
states keep unchanged. In this paper, particle state 
compression scheme and its architecture are proposed with 
the purpose of reducing memory requirement for particle 
states while maintaining filtering accuracy, which is not 
considered in earlier studies. In the scheme, particles are 
processed in original bit-width, stored in a compressed way 
and recovered before sampling of next iteration. Memory 
requirement is reduced with the trade-off of deviations 
between original and recovered state values. A case study by 
simulation is demonstrated to help analyzing the influence 
of the deviations as well as proving the effectiveness of the 
proposed scheme. 

The rest of the paper is organized as follows. Section 2 
briefly introduces generic particle filter (GPF) algorithm, 
followed by detailed description of the proposed state 
compression scheme and its architecture in Section 3. 
Section 4 presents a case study of the scheme in terms of 
filtering accuracy and memory overhead and Section 5 
concludes the paper. 
 

2. GPF ALGORITHM 
 
In state estimation problems, system state evolving with 
time can be modeled using the following two equations 

𝑋𝑡 = 𝑓𝑡(𝑋𝑡−1,𝑢𝑡)                            (1) 
𝑍𝑡 = 𝑔𝑡(𝑋𝑡 ,𝑣𝑡)                               (2) 

where t is time-step index, 𝑋𝑡, 𝑍𝑡 is the system state vector 
and observation vector, respectively. 𝑓𝑡, 𝑔𝑡 is state transition 
function and observation function with 𝑢𝑡 ,  𝑣𝑡  as additive 
process noise and observation noise. Analytical form of the 
two functions is assumed known in the model. The goal is to 
estimate the state vector 𝑋𝑡 , ∀𝑡 ∈ ℕ recursively from input 
observations 𝑍1:𝑡 = {𝑍1, 𝑍2, ⋯, 𝑍𝑡}. 

Centralized implementation of generic particle filtering 
is the cyclical process of sampling, weight calculation and 
resampling applied to a set of random samples which are 
recursively updated with time to approximate the PDF 
𝓅(𝑋𝑡|𝑍1:𝑡). In sampling, a total number of N particles, with 
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each one represented by 𝑋𝑡
(𝑛) (1≤n≤N), are drawn from an 

importance density 𝜋(𝑋𝑡), namely 𝑋𝑡
(𝑛)~ π(𝑋𝑡|𝑋𝑡−1

(𝑛) ,𝑍1:𝑡). 
Then in importance step, the weight of each particle is 
evaluated by a given observation using equation (3) and 
normalized by equation (4). 

𝜔𝑡
∗(𝑛) = 𝜔𝑡−1

∗(𝑛) 𝓅�𝑍𝑡�𝑋𝑡
(𝑛)�𝓅�𝑋𝑡

(𝑛)�𝑋𝑡−1
(𝑛) �

π(𝑋𝑡
(𝑛)|𝑋1:𝑡−1

(𝑛) ,𝑍1:𝑡)
,               (3) 

𝜔𝑡
(𝑛) = 𝜔𝑡

∗(𝑛)

∑ 𝜔𝑡
∗(𝑛)𝑁

𝑛=1
.                                (4) 

The estimated result is obtained by 
𝑋�𝑡 = ∑ 𝑋𝑡

(𝑛)𝜔𝑡
(𝑛)𝑁

𝑛=1 .                            (5) 
Finally, in resampling, particles with dominating weights 
are replicated and particles with negligible weights are 
discarded while keeping the number of particle set the same. 

 
3. PROPOSED SCHEME AND ARCHITECTURE 

 
In this section, proposed particle state compression scheme 
is introduced in detail and the resulting trade-off is analyzed. 
Architecture supporting the scheme is then presented 
including a generalized memory requirement discussion. 
 
3.1. Proposed scheme 
 
In a D-dimensional system, the interval of particle state 
values in each dimension is firstly divided into A sub-
intervals after the particle set is sampled. Then, compressed 
particle information is calculated and stored. Before 
sampling of next iteration, particle states are recovered to 
continue filtering process. Table 1 summarizes the mathe-
matical operations involved in the compression-recovery 
process at time-step t where 𝑋(𝑑)𝑡𝑚𝑎𝑥 , 𝑋(𝑑)𝑡𝑚𝑖𝑛 , Δ𝑋(𝑑)𝑡 
represents maximum, minimum and sub-interval length of 
the dth-dimension and 𝑋(𝑑)𝑡

(𝑛) , 𝑋(𝑑𝑐)𝑡
(𝑛) , 𝑋(𝑑𝑟)𝑡

(𝑛) denotes 
the dth component of original, compressed and recovered nth 
particle state vector, respectively (1≤d≤D). 

Figure 1 is an example of compression scheme applied 
to a one-dimensional state vector with 24 particles where 
A=2 and 4 are both shown. As can be seen, every particle 
state is converted into an integer ranging from 0 to A-1 and 
all particles in the same sub-interval range are compressed 

into the same one. As a result, the bit-width of compressed 
state is determined by parameter A regardless of the width of 
original states. Memory consumption then can be reduced 
when A is chosen properly that compressed particle states 
have shorter bit-width. In recovery, particles with the same 
compressed value turn into the same ones and the digits 
above the recovered states in Figure 1 indicate the number 
of particles concentrate on the corresponding state. 

But, compression done after all particles are generated 
helps little in cutting down memory overhead since 
tremendous memory is already consumed to record the 
original uncompressed particle states. This issue is solved 
by employing the technique that particles are processed in 
even sub-groups sequentially. Once a sub-group of particles 
are sampled, compression is applied, producing and storing 
the compressed state values. Sampling is completed by 
repeating similar process for all sub-groups. Since the 
scheme is totally independent from weight variables, 
resampling is not influenced. The modified timing flow is 
shown and compared to GPF in Figure 2 where P denotes 
the number of sub-groups in proposed scheme. In this way, 
the size of memory for original states is reduced to one sub-
group and can be used cyclically for different sub-groups. In 
addition, minimum and sub-interval length values of sub-
groups are all stored since they may vary among sub-groups. 

Fig. 2. Timing of GPF and proposed scheme 
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Fig. 1. Example of the compression scheme 
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Table 1. Mathematical operations in the scheme 
Calculating sub-interval length in each dimension 

∆𝑋(𝑑)𝑡 =
𝑋(𝑑)𝑡𝑚𝑎𝑥 − 𝑋(𝑑)𝑡𝑚𝑖𝑛

𝐴
 

Compression: for every particle in each dimension 

𝑋(𝑑𝑐)𝑡
(𝑛) = 𝑓𝑙𝑜𝑜𝑟(

𝑋(𝑑)𝑡
(𝑛) − 𝑋(𝑑)𝑡𝑚𝑖𝑛

∆𝑋(𝑑)𝑡
) 

Recovery: for every particle in each dimension 
𝑋(𝑑𝑟)𝑡

(𝑛) = 𝑋(𝑑)𝑡𝑚𝑖𝑛 + 𝑋(𝑑𝑐)𝑡
(𝑛) ∗ ∆𝑋(𝑑)𝑡 
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Group index of a particle is utilized, defining which sub-
group it belongs to and values are chosen accordingly in 
recovery to guarantee the correctness of recovered states. 

Since particles are processed in original bit-width and 
resampling is done on the whole particle set, the process of 
the scheme differs little from classical particle filtering 
algorithm except for the fact that recovered particle states 
for sampling of next iteration get shifted when compared to 
original ones. Consequently, deviations in each dimension 
are introduced as the trade-off for memory reduction. 
Considering that deviations may not necessarily at the same 
order of magnitude among dimensions, they are treated 
independently and equation (6) defines dev in dth-dimension 
(1≤d≤D) the way similar to quantization error. 

𝑑𝑒𝑣(𝑑) =
∑ �𝑋(𝑑)𝑡

(𝑛)−𝑋(𝑑𝑟)𝑡
(𝑛)�

2𝑁
𝑛=1

𝑁−1
               (6) 

Also noticed in Figure 1, when A increases, part of 
recovered states will be more close to original ones while 
remaining states kept the same. This yields a reversely 
proportional relation between A and dev. The scheme will 
then be just the same with GPF for A→∞. Therefore, 
threshold value AT exists that for A≥AT, dev is negligible and 
the scheme can be treated equivalent to that of GPF, which 
ensures filtering performance of the scheme. This issue is 
further discussed in the case study in Section 4. 

 
3.2. Architecture 
 
Figure 3 presents the proposed sampling architecture for the 
scheme while remaining weight calculation and resampling 
architecture are kept the same with GPF. Considering 
various resampling techniques, Systematic Resampling (SR) 
[4] is chosen as the outputs are index of replicated particles 
and its replication factor. 

After a particle is sampled, it is used to update the 
minimum or maximum value as well as stored in PMEM for 
the compression followed. When a sub-group of particles 

are sampled, sub-interval length of the sub-group in each 
dimension is calculated, kicking off the process of com-
pression. Compressed states are generated with subtraction-
division and stored in MEMc. The corresponding minimum, 
sub-interval length and group index are stored in MEMmi, 
MEMsi (i=1,2) and MEMg for recovery, respectively. When 
all sub-groups are processed, resampling starts. Replicated 
particle index, generated by resampling, is used to access 
the compressed states and the corresponding minimum and 
sub-interval length. By a multiplication and addition, one 
particle state is recovered to continue sampling in next 
recursion. Ping-Pong scheme is supported here as pairs of 
MEMm and MEMs are used. 

Since only simple logic units are introduced while the 
rest parts including resampling and weight calculation keep 
the same, the complexity of whole system remains not much 
influenced. And by adopting the architecture, memory 
requirement for storing particle states is analyzed and 
compared to GPF. Table 2 summarizes the comparison 
where N, D, k denotes the number of particles used, system 
dimension and bit-width of original particle state in each 
dimension. P and A have the same assignment as before. 
The components in the expression of proposed scheme 
correspond to PMEM, MEMmi and MEMsi (i=1,2), MEMc, 
MEMg in Figure 3, respectively.  

Table 2. Memory requirement comparison 
 Memory for storing particle states 
GPF kDN 
Proposed kDN/P +2kDP+NDlog2A+Nlog2P 

For a given application where N, D, k is defined and by 
treating P as the variable, memory requirement is minimized 
when equation (7) is satisfied. A is independent from P and 
its influence is discussed in Section 4. 

𝑃 =
�( 𝑁

𝑙𝑛2)2+8𝑘2𝐷2𝑁− 𝑁
𝑙𝑛2

4𝑘𝐷
                     (7) 

Fig. 3. Sampling architecture of proposed scheme 

×

Reg

Sample

Compressed 
state 

memory
(MEMc)

Read

Write

Data

Addr

Addr

Group 
index 

memory
(MEMg)

Read

Write

Data

Addr

Addr

Compressed 
state

Group 
index

Addr

Sub-
interval 
length

Min

＋
PMEM

Read

Write

Data

Addr

Comp.

＜

≥

Comp.

＜

≥

－ Div Compressed 
state

Min

MaxR
ep

lic
at

ed
 

Pa
rti

cl
e 

In
de

x

Sub-
interval 
length

Min value 
memory

(MEMm2)

Sub-
interval 
length 

memory 
(MEMs2)

Min value 
memory

(MEMm1)

Sub-
interval 
length 

memory 
(MEMs1)

Addr

Data

Data

Cnt2

C
nt

1

D
el

ay
D

el
ay

2579



4. EVALUATION 
 

A case study for the proposed scheme in terms of filtering 
performance and particle state memory consumption is 
presented in this section under the 5-dimensional Nearly 
Constant Turn (NCT) [10] system, where k=16 in classical 
realization. 
 
4.1. Filtering performance 
 
Simulations are conducted with Root Mean Square Error 
(RMSE) as criterion for both GPF and the proposed scheme. 
Simulated cases are particle number N=1024, 2048, 3072, 
4096 and by utilizing equation (7), P= 18.5, 24.1, 27.7, 30.4 
for different N. To guarantee an integer value for number of 
particles in a sub-group, P is chosen as 16 for simplicity in 
all cases in proposed scheme. Moreover, different A values 
are chosen to illustrate its influence on filtering performance. 
Figure 4 plots the simulated RMSE while the deviation in 
the first dimension of state vector at N=2048 is depicted in 
Figure 5 as an example. 

As can be seen from Figure 4, RMSE keeps at the same 
level with respect to GPF for A≥64. And obviously, 
deviation drops with increasing A as Figure 5 demonstrates. 

By combining previous analysis, the threshold value AT=64 
in this case as deviation introduced by the compression-
recovery scheme is negligible and the process of the 
proposed scheme can be treated equivalent to that of GPF 
since same level of satisfying filtering performance is 
achieved. For A<AT, accuracy tends to be poorer since 
recovered particle states are more concentrated on limited 
values. The resulting less diverse particle set will deteriorate 
the estimation precision. 

 
4.2. Particle state memory consumption 
 
Particle state memory consumption is the primary concern 
of the proposed scheme and in this case, a more direct 
clarification other than the expression in Table 2 is provided 
in Figure 6, where memory consumption in simulated case 
of N=2048, P=16, k=16 are compared, with GPF normalized 
to 1. Memory consumption of proposed scheme grows 
linearly when A increases exponentially, which is easily 
seen from the expression in Table 2. 

Although minimum memory requirement for storing 
particle states is achieved at A=32, but memory reduction 
without sacrificing filtering accuracy is acceptable, i.e., 
A≥AT. Minimum requirement is therefore attained at A=64, 
50.31% of GPF and the corresponding bit-width of 
compressed states is log264=6. In practical implementation 
with N, D, k already defined, memory overhead can be 
further reduced since P is not an optimized value for all 
cases in the simulation. 

 
5. CONCLUSIOIN 

 
Presented in this paper is the particle state compression 
scheme and its architecture for centralized implementation. 
Memory requirement for storing particle states can be eased 
in the scheme with the trade-off of deviations introduced by 
the compression-recovery process. In the case study under 
NCT scenario, results show that proposed scheme is 
equivalent to GPF for A no less than 64 since filtering 
accuracy is maintained. Memory consumption for storing 
particle states can be reduced up to 49.69% when compared 
to traditional realizations. 

Fig. 4. RMSE results of GPF and proposed scheme 
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