
PARTICLE STATE COMPRESSION SCHEME FOR CENTRALIZED
MEMORY-EFFICIENT PARTICLE FILTERS

Qinglin Tian1, Yun Pan2, Xiaolang Yan1, Ning Zheng3, Ruohong Huan4

1College of Electrical Engineering, Zhejiang University, China

2Department of Information Science & Electronic Engineering, Zhejiang University, China
3Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, USA

4College of Computer Science and Technology, Zhejiang University of Technology, China

ABSTRACT

In this paper, particle state compression scheme is proposed
together with its architecture for centralized implementation
of particle filters. In the scheme, state values are processed
in original bit-width, stored in a compressed way and
recovered before sampling of next iteration. The advantage
of the scheme is that particle states memory requirement can
be greatly reduced while the trade-off is the deviations
between original and recovered states introduced by the
process. A case study in Nearly Constant Turn (NCT)
scenario shows that while achieving the same level of
filtering accuracy, proposed scheme can save up to 49.69%
memory overhead for storing particle state values compared
to traditional realizations.

Index Terms—particle filters, compression scheme,
memory-efficient, implementation.

1. INTRODUCTION

In nonlinear/non-Gaussian Bayesian state estimation pro-
blems, particle filter (PF) [1] based on sequential Monte
Carlo method outperforms traditional extended Kalman
filter (EKF) and has gained popularity in fields including
signal processing, computer vision and navigation [2, 4].
The key idea is to recursively approximate the probability
density function (PDF) using a set of random samples by
sampling, weight calculation and resampling steps. Due to
its high computational complexity nature, dedicated
hardware is a more promising solution other than software
when implementing PFs. [3] studies the effect of finite
precision processing in hardware implementation and shows
that long bit-width is needed to achieve satisfying filtering
performance. The resulting hardware complexity and
considerable memory overhead all present challenges for a

more efficient design. Previous works made great efforts on
algorithmic [5-7] and architectural [5, 8, 9] level of particle
filtering while the astonishing memory overhead for particle
states keep unchanged. In this paper, particle state
compression scheme and its architecture are proposed with
the purpose of reducing memory requirement for particle
states while maintaining filtering accuracy, which is not
considered in earlier studies. In the scheme, particles are
processed in original bit-width, stored in a compressed way
and recovered before sampling of next iteration. Memory
requirement is reduced with the trade-off of deviations
between original and recovered state values. A case study by
simulation is demonstrated to help analyzing the influence
of the deviations as well as proving the effectiveness of the
proposed scheme.

The rest of the paper is organized as follows. Section 2
briefly introduces generic particle filter (GPF) algorithm,
followed by detailed description of the proposed state
compression scheme and its architecture in Section 3.
Section 4 presents a case study of the scheme in terms of
filtering accuracy and memory overhead and Section 5
concludes the paper.

2. GPF ALGORITHM

In state estimation problems, system state evolving with
time can be modeled using the following two equations

𝑋𝑡 = 𝑓𝑡(𝑋𝑡−1,𝑢𝑡) (1)
𝑍𝑡 = 𝑔𝑡(𝑋𝑡 ,𝑣𝑡) (2)

where t is time-step index, 𝑋𝑡, 𝑍𝑡 is the system state vector
and observation vector, respectively. 𝑓𝑡, 𝑔𝑡 is state transition
function and observation function with 𝑢𝑡 , 𝑣𝑡 as additive
process noise and observation noise. Analytical form of the
two functions is assumed known in the model. The goal is to
estimate the state vector 𝑋𝑡 , ∀𝑡 ∈ ℕ recursively from input
observations 𝑍1:𝑡 = {𝑍1, 𝑍2, ⋯, 𝑍𝑡}.

Centralized implementation of generic particle filtering
is the cyclical process of sampling, weight calculation and
resampling applied to a set of random samples which are
recursively updated with time to approximate the PDF
𝓅(𝑋𝑡|𝑍1:𝑡). In sampling, a total number of N particles, with

This research was supported by Zhejiang Provincial Natural
Science Foundation of China (No. LQ12F04002), National
Natural Science Foundation of China (No. 61204030) and
Zhejiang Provincial Information Processing and Automation
Technology Key Discipline Open Foundation of China.

2577978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

each one represented by 𝑋𝑡
(𝑛) (1≤n≤N), are drawn from an

importance density 𝜋(𝑋𝑡), namely 𝑋𝑡
(𝑛)~ π(𝑋𝑡|𝑋𝑡−1

(𝑛) ,𝑍1:𝑡).
Then in importance step, the weight of each particle is
evaluated by a given observation using equation (3) and
normalized by equation (4).

𝜔𝑡
∗(𝑛) = 𝜔𝑡−1

∗(𝑛) 𝓅�𝑍𝑡�𝑋𝑡
(𝑛)�𝓅�𝑋𝑡

(𝑛)�𝑋𝑡−1
(𝑛) �

π(𝑋𝑡
(𝑛)|𝑋1:𝑡−1

(𝑛) ,𝑍1:𝑡)
, (3)

𝜔𝑡
(𝑛) = 𝜔𝑡

∗(𝑛)

∑ 𝜔𝑡
∗(𝑛)𝑁

𝑛=1
. (4)

The estimated result is obtained by
𝑋�𝑡 = ∑ 𝑋𝑡

(𝑛)𝜔𝑡
(𝑛)𝑁

𝑛=1 . (5)
Finally, in resampling, particles with dominating weights
are replicated and particles with negligible weights are
discarded while keeping the number of particle set the same.

3. PROPOSED SCHEME AND ARCHITECTURE

In this section, proposed particle state compression scheme
is introduced in detail and the resulting trade-off is analyzed.
Architecture supporting the scheme is then presented
including a generalized memory requirement discussion.

3.1. Proposed scheme

In a D-dimensional system, the interval of particle state
values in each dimension is firstly divided into A sub-
intervals after the particle set is sampled. Then, compressed
particle information is calculated and stored. Before
sampling of next iteration, particle states are recovered to
continue filtering process. Table 1 summarizes the mathe-
matical operations involved in the compression-recovery
process at time-step t where 𝑋(𝑑)𝑡𝑚𝑎𝑥 , 𝑋(𝑑)𝑡𝑚𝑖𝑛 , Δ𝑋(𝑑)𝑡
represents maximum, minimum and sub-interval length of
the dth-dimension and 𝑋(𝑑)𝑡

(𝑛) , 𝑋(𝑑𝑐)𝑡
(𝑛) , 𝑋(𝑑𝑟)𝑡

(𝑛) denotes
the dth component of original, compressed and recovered nth
particle state vector, respectively (1≤d≤D).

Figure 1 is an example of compression scheme applied
to a one-dimensional state vector with 24 particles where
A=2 and 4 are both shown. As can be seen, every particle
state is converted into an integer ranging from 0 to A-1 and
all particles in the same sub-interval range are compressed

into the same one. As a result, the bit-width of compressed
state is determined by parameter A regardless of the width of
original states. Memory consumption then can be reduced
when A is chosen properly that compressed particle states
have shorter bit-width. In recovery, particles with the same
compressed value turn into the same ones and the digits
above the recovered states in Figure 1 indicate the number
of particles concentrate on the corresponding state.

But, compression done after all particles are generated
helps little in cutting down memory overhead since
tremendous memory is already consumed to record the
original uncompressed particle states. This issue is solved
by employing the technique that particles are processed in
even sub-groups sequentially. Once a sub-group of particles
are sampled, compression is applied, producing and storing
the compressed state values. Sampling is completed by
repeating similar process for all sub-groups. Since the
scheme is totally independent from weight variables,
resampling is not influenced. The modified timing flow is
shown and compared to GPF in Figure 2 where P denotes
the number of sub-groups in proposed scheme. In this way,
the size of memory for original states is reduced to one sub-
group and can be used cyclically for different sub-groups. In
addition, minimum and sub-interval length values of sub-
groups are all stored since they may vary among sub-groups.

Fig. 2. Timing of GPF and proposed scheme

R#1
S#1
WC#1

C#1

R#P
S#P
WC#P

C#P

R#1
S#1
WC#1

C#1

Sampling
Weight Calculate

Resampling

Sampling
Weight Calculate

One Iteration

Resampling
One Iteration

(a) GPF

(b) Proposed

R: Recovery
S: Sampling

WC: Weight Calculate
C: Compression

Fig. 1. Example of the compression scheme

Original
particle state Xt

min Xt
max

Compressed
particle state
Recovered

particle state

Compression
scheme with

A=2

Compressed
particle state

Compression
scheme with

A=4 0 1 2 3

Xt
max

0 1

Xt
min Xt

max

Recovered
particle state Xt

min

6 8 5 5

14 10

Table 1. Mathematical operations in the scheme
Calculating sub-interval length in each dimension

∆𝑋(𝑑)𝑡 =
𝑋(𝑑)𝑡𝑚𝑎𝑥 − 𝑋(𝑑)𝑡𝑚𝑖𝑛

𝐴

Compression: for every particle in each dimension

𝑋(𝑑𝑐)𝑡
(𝑛) = 𝑓𝑙𝑜𝑜𝑟(

𝑋(𝑑)𝑡
(𝑛) − 𝑋(𝑑)𝑡𝑚𝑖𝑛

∆𝑋(𝑑)𝑡
)

Recovery: for every particle in each dimension
𝑋(𝑑𝑟)𝑡

(𝑛) = 𝑋(𝑑)𝑡𝑚𝑖𝑛 + 𝑋(𝑑𝑐)𝑡
(𝑛) ∗ ∆𝑋(𝑑)𝑡

2578

Group index of a particle is utilized, defining which sub-
group it belongs to and values are chosen accordingly in
recovery to guarantee the correctness of recovered states.

Since particles are processed in original bit-width and
resampling is done on the whole particle set, the process of
the scheme differs little from classical particle filtering
algorithm except for the fact that recovered particle states
for sampling of next iteration get shifted when compared to
original ones. Consequently, deviations in each dimension
are introduced as the trade-off for memory reduction.
Considering that deviations may not necessarily at the same
order of magnitude among dimensions, they are treated
independently and equation (6) defines dev in dth-dimension
(1≤d≤D) the way similar to quantization error.

𝑑𝑒𝑣(𝑑) =
∑ �𝑋(𝑑)𝑡

(𝑛)−𝑋(𝑑𝑟)𝑡
(𝑛)�

2𝑁
𝑛=1

𝑁−1
 (6)

Also noticed in Figure 1, when A increases, part of
recovered states will be more close to original ones while
remaining states kept the same. This yields a reversely
proportional relation between A and dev. The scheme will
then be just the same with GPF for A→∞. Therefore,
threshold value AT exists that for A≥AT, dev is negligible and
the scheme can be treated equivalent to that of GPF, which
ensures filtering performance of the scheme. This issue is
further discussed in the case study in Section 4.

3.2. Architecture

Figure 3 presents the proposed sampling architecture for the
scheme while remaining weight calculation and resampling
architecture are kept the same with GPF. Considering
various resampling techniques, Systematic Resampling (SR)
[4] is chosen as the outputs are index of replicated particles
and its replication factor.

After a particle is sampled, it is used to update the
minimum or maximum value as well as stored in PMEM for
the compression followed. When a sub-group of particles

are sampled, sub-interval length of the sub-group in each
dimension is calculated, kicking off the process of com-
pression. Compressed states are generated with subtraction-
division and stored in MEMc. The corresponding minimum,
sub-interval length and group index are stored in MEMmi,
MEMsi (i=1,2) and MEMg for recovery, respectively. When
all sub-groups are processed, resampling starts. Replicated
particle index, generated by resampling, is used to access
the compressed states and the corresponding minimum and
sub-interval length. By a multiplication and addition, one
particle state is recovered to continue sampling in next
recursion. Ping-Pong scheme is supported here as pairs of
MEMm and MEMs are used.

Since only simple logic units are introduced while the
rest parts including resampling and weight calculation keep
the same, the complexity of whole system remains not much
influenced. And by adopting the architecture, memory
requirement for storing particle states is analyzed and
compared to GPF. Table 2 summarizes the comparison
where N, D, k denotes the number of particles used, system
dimension and bit-width of original particle state in each
dimension. P and A have the same assignment as before.
The components in the expression of proposed scheme
correspond to PMEM, MEMmi and MEMsi (i=1,2), MEMc,
MEMg in Figure 3, respectively.

Table 2. Memory requirement comparison
 Memory for storing particle states
GPF kDN
Proposed kDN/P +2kDP+NDlog2A+Nlog2P

For a given application where N, D, k is defined and by
treating P as the variable, memory requirement is minimized
when equation (7) is satisfied. A is independent from P and
its influence is discussed in Section 4.

𝑃 =
�(𝑁

𝑙𝑛2)2+8𝑘2𝐷2𝑁− 𝑁
𝑙𝑛2

4𝑘𝐷
 (7)

Fig. 3. Sampling architecture of proposed scheme

×

Reg

Sample

Compressed
state

memory
(MEMc)

Read

Write

Data

Addr

Addr

Group
index

memory
(MEMg)

Read

Write

Data

Addr

Addr

Compressed
state

Group
index

Addr

Sub-
interval
length

Min

＋
PMEM

Read

Write

Data

Addr

Comp.

＜

≥

Comp.

＜

≥

－ Div Compressed
state

Min

MaxR
ep

lic
at

ed

Pa
rti

cl
e

In
de

x

Sub-
interval
length

Min value
memory

(MEMm2)

Sub-
interval
length

memory
(MEMs2)

Min value
memory

(MEMm1)

Sub-
interval
length

memory
(MEMs1)

Addr

Data

Data

Cnt2

C
nt

1

D
el

ay
D

el
ay

2579

4. EVALUATION

A case study for the proposed scheme in terms of filtering
performance and particle state memory consumption is
presented in this section under the 5-dimensional Nearly
Constant Turn (NCT) [10] system, where k=16 in classical
realization.

4.1. Filtering performance

Simulations are conducted with Root Mean Square Error
(RMSE) as criterion for both GPF and the proposed scheme.
Simulated cases are particle number N=1024, 2048, 3072,
4096 and by utilizing equation (7), P= 18.5, 24.1, 27.7, 30.4
for different N. To guarantee an integer value for number of
particles in a sub-group, P is chosen as 16 for simplicity in
all cases in proposed scheme. Moreover, different A values
are chosen to illustrate its influence on filtering performance.
Figure 4 plots the simulated RMSE while the deviation in
the first dimension of state vector at N=2048 is depicted in
Figure 5 as an example.

As can be seen from Figure 4, RMSE keeps at the same
level with respect to GPF for A≥64. And obviously,
deviation drops with increasing A as Figure 5 demonstrates.

By combining previous analysis, the threshold value AT=64
in this case as deviation introduced by the compression-
recovery scheme is negligible and the process of the
proposed scheme can be treated equivalent to that of GPF
since same level of satisfying filtering performance is
achieved. For A<AT, accuracy tends to be poorer since
recovered particle states are more concentrated on limited
values. The resulting less diverse particle set will deteriorate
the estimation precision.

4.2. Particle state memory consumption

Particle state memory consumption is the primary concern
of the proposed scheme and in this case, a more direct
clarification other than the expression in Table 2 is provided
in Figure 6, where memory consumption in simulated case
of N=2048, P=16, k=16 are compared, with GPF normalized
to 1. Memory consumption of proposed scheme grows
linearly when A increases exponentially, which is easily
seen from the expression in Table 2.

Although minimum memory requirement for storing
particle states is achieved at A=32, but memory reduction
without sacrificing filtering accuracy is acceptable, i.e.,
A≥AT. Minimum requirement is therefore attained at A=64,
50.31% of GPF and the corresponding bit-width of
compressed states is log264=6. In practical implementation
with N, D, k already defined, memory overhead can be
further reduced since P is not an optimized value for all
cases in the simulation.

5. CONCLUSIOIN

Presented in this paper is the particle state compression
scheme and its architecture for centralized implementation.
Memory requirement for storing particle states can be eased
in the scheme with the trade-off of deviations introduced by
the compression-recovery process. In the case study under
NCT scenario, results show that proposed scheme is
equivalent to GPF for A no less than 64 since filtering
accuracy is maintained. Memory consumption for storing
particle states can be reduced up to 49.69% when compared
to traditional realizations.

Fig. 4. RMSE results of GPF and proposed scheme

GPF
A=32
A=64

A=128
A=256
A=512

1000 1500 2000 2500 3000 3500 4000
Particle Number (N)

13.2

13.4

13.6

13.8

14.0

R
M

SE

14.2

14.4

14.6

14.8

Fig. 5. Deviation example

10-3

10-2

100

10-1

D
ev

ia
tio

n

64 128 25632 512
Number of sub-intervals (A)

Fig. 6. Particle states memory consumption

GPF

0.2

0.4

0.8

1.0

0.6

Proposed Scheme

M
em

or
y

C
on

su
m

pt
io

n

64 128 256 51232
Number of sub-intervals (A)

2580

REFERENCES

[1] N.J. Gordon, D.J. Salmond, A.F.M. Smith, “Novel ap-
proach to nonlinear/non-Gaussian Bayesian state estimation,”
IEEE Proc. of Radar and Signal Processing, vol. 140, pp.
107-113, 1993.
[2] F. Gustafsson, F. Gunnarsson, N. Bergman, “Particle
filters for positioning, navigation, and tracking,” IEEE
Trans. on Signal Processing, vol. 50, issue 2, pp. 425-437,
2002.
[3] M. Bolic, S. Hong, P.M. Djuric, “Finite precision effect
on performance and complexity of particle filters for
bearing-only tracking,” Conference Record of Asilomar
Conference on Signals, Systems and Computers, vol. 1, pp.
838-842, 2002.
[4] A. Athalye, M. Bolic, S. Hong, “Generic Hardware
Architectures for Sampling and Resampling in Particle
Filters,” EURASIP Journal on Applied Signal Processing,
vol. 17, pp. 2888-2902, 2005.
[5] Q. Cheng, P. Bondon, “An Efficient Two-Stage
Sampling Method in Particle Filter,” IEEE Trans. on

Aerospace and Electronic Systems, vol. 48, issue 3, pp.
2666-2672, 2012.
[6] X. Fu, Y. Jia, “An Improvement on Resampling
Algorithm of Particle Filters,” IEEE Trans. on Signal
Processing, vol. 58, issue 10, pp. 5414-5420, 2010.
[7] A.C. Sankaranarayanan, A. Srivastava, R. Chellappa,
“Algorithmic and Architectural Optimizations for
Computationally Efficient Particle Filtering,” IEEE Trans.
on Image Processing, vol. 17, issue 5, pp. 737-748, 2008.
[8] N. Zheng, Y. Pan, X. Yan, “Local weight mean
comparison scheme and architecture for high-speed particle
filters,” Electronic Letters, vol. 47, issue 2, pp. 142-144,
2011.
[9] H.A.A. El-Halym, I.I. Mahmoud, S.E. Habib, “Efficient
hardware architecture for Particle Filter based object
tracking,” IEEE ICIP, pp. 4497-4500, 2010.
[10] A.S. Bashi, V.P. Jilkov, X.R. Li, “Distributed
implementation of particle filters,” Proc. of International
Conference of Information Fusion, vol. 2, pp. 1164-1171,
2003.

2581

