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ABSTRACT

This paper proposes and discusses an architecture with
scalability features for the parallel implementation of algo-
rithms relying on modular arithmetic fully supported by the
Residue Number System (RNS). The systematic mapping
of a generic modular arithmetic algorithm to the architec-
ture is presented. It can be applied as a high level synthesis
step for an Application Specific Integrated Circuit (ASIC) or
Field Programmable Gate Array (FPGA) design flow target-
ing modular arithmetic algorithms. An implementation with
the Xilinx FPGA Virtex 4 technology (xc4vsx55) of modular
exponentiation and Elliptic Curve (EC) point multiplication,
used in the Rivest-Shamir-Adleman (RSA) and EC crypto-
graphic algorithms, suggests latency results in the same order
of magnitude of the fastest hardware implementations of these
operations known to date.

Index Terms— Residue Number System (RNS), Modu-
lar Arithmetic, Cryptography, Embedded Systems, Electronic
Design Automation (EDA).

1. INTRODUCTION

Modular Arithmetic (MA) can be found in a variety of appli-
cations including cryptography [1, 2]. Hardware accelerators
for such applications may completely rely in MA or in some
blocks that apply modular operations. Hence, for the effi-
ciency sake, the designer of such systems should not only be
aware of the best system design practices but also of the math-
ematical details concerning modular arithmetic. While the
software solutions based on general purpose processors pro-
vide flexibility, these solutions may not be attractive in what
concerns latency, cost, and power consumption. An approach
to overcome these problems is to develop dedicated hardware
accelerators for the most demanding operations. These accel-
erators should be designed such that the flexibility and poten-
tial reuse of the already designed blocks is not constrained.

An approach to obtain fast and efficient accelerators is
parallelization. The Residue Number System (RNS) concept
has been successfully tested towards low latency computation
in highly parallel architectures such as the ones of Graph-
ical Processing Units (GPUs), while targeting hundreds-of-
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bits wide data for cryptographic purposes [3–5]. The RNS
enables an alternative representation of the operands, creating
data parallelism even for algorithms with several data depen-
dencies. However, the utilization of RNS also inserts com-
putational overheads that should be balanced with the gains
obtained from the parallelization so that performance can be
maximized.

This paper proposes and discusses a microprogrammable
architecture which: i) supports the implementation of efficient
parallel RNS-based accelerators; ii) eases the mapping of any
general modular arithmetic algorithm to the RNS arithmetic;
iii) can be easily scalable to different algorithms and perfor-
mance demands; and iv) enable tuning the balance between
parallelism and performance overhead. The proposed archi-
tecture can be described by generic parameters and is regu-
lar, which allows one to use an high-level synthesis approach
to obtain accelerators for any given modular arithmetic al-
gorithm. A case study for two main applications of mod-
ular arithmetic, namely the modular exponentiation and the
Elliptic Curve (EC) point multiplication employed in crypto-
graphic protocols, is presented, and evaluated with Field Pro-
grammable Gate Array (FPGA) technology. Results suggest
competitive performance figures regarding the fastest dedi-
cated implementation proposed in the literature for the same
technologies.

The paper organization is the following. Section 2
presents the details of the RNS arithmetic and the imple-
mentation of modular arithmetic with the RNS. Section 3
presents how the proposed architecture relate to previous
work and Section 4 presents its details. Section 5 evaluates
the architecture by using a case study and Section 6 draws the
main conclusions.

2. THE RNS AND MODULAR ARITHMETIC

By defining a basis Bi = {m1,i, ...,mhi,i} of pairwise co-
prime elements and an associated dynamic range Mi =
∏hi

e=1
me,i, an integer X < M has a correspondent RNS rep-

resentation x1,i = X mod m1,i, ..., xhi,i = X mod mhi,i.
The main advantage of the RNS representation is the possi-
bility to perform in parallel the same operations one would
do with integers: for three integers X , Y , and Z = X ⊙ Y

smaller than Mi, where ⊙ is either an addition/subtraction
or a multiplication, as z1,i = x1,i ⊙ y1,i mod m1,i, ...,
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Fig. 1: Hierarchy for computing the target designer’s algo-
rithm based on the RNS representation. The operands used in
the description of a MA algorithm are converted to the RNS
representation so that the SMA is computed in parallel by the
several channels, each one computing CMA. Thereafter, the
results are converted back to the original representation used
in the SMA. The challenge in the implementations with the
RNS is to find efficient ways for computing operations such
as addition, multiplication and modular reduction described
in SMA with the CMA [see [6] for details].

Algorithm 1 Optimized RNS reduction. The values λ are
precomputed constants [6] and the values α̂i result from the
accumulation of part of the bits of qe,1 values.

Require: Mre,1, Mre,2 .
Ensure: Mue,1 = (RM1 mod N)e,1.
Ensure: Mue,2 = (RM1 mod N)e,2.

1: In ch. e, 1: qe,1 = |Mre,1λe,1|me,1

2: In ch. e, 2: qe,2 =
∣

∣

∣

(

∑h1

j=1
qj,1λ2ej + α̂1

)

λ3e

∣

∣

∣

me,2

3: In ch. e, 2: Mue,2 = |(Mre,2 + qe,2)λ4e|me,2

4: In ch. e, 2: qe,1 = |Mue,2λ5e|me,2

5: In ch. e, 1: Mue,1 =
∣

∣

∣

(

∑h2

j=1
qj,1λ6ej + α̂2

)

λ7e

∣

∣

∣

me,1

6: return Mue,1, Mue,2.

zhi,i = xhi,i⊙yhi,i mod mhi,i. An operation performed over
the RNS representation mod me,i is said to be performed on
the RNS channel defined by me,i. Figure 1 depicts the cor-
respondence between an integer X , processed with System
Modular Arithmetic (SMA), and the residues xe,i which are
operated with Channel Modular Arithmetic (CMA).

Concerning the modular arithmetic, besides addition
and multiplication which are straightforward, a main op-
eration to be implemented is the modular reduction. Al-
gorithm 1 presents a method to accomplish the modulo N

reduction of an integer R. In order to optimize the per-
formance of Algorithm 1 the input R and outputs U are
represented in a different domain (Montgomery Domain) so
that MR = R(M2

1
mod N) and MU = U(M1 mod N).

The presented modular reduction method is often referred to
as Basis Extension (BE) given that it extends the operands
representation for two RNS bases, B1 and B2 [see [6] for
details].

The conversions of the data to and from the RNS repre-

sentation are also important components in an RNS imple-
mentation. The required input data X can be converted to
RNS with the direct computation of xe,i = X mod me,i for
each channel e of the basis Bi. The reverse conversion can be
accomplished by using a scalable method based on the Chi-
nese Remainder Theorem (CRT) that states for the basis Bi

that X =
∑hi

e=1
(xe,iΨe) mod Mi, where Ψe are precom-

puted constants and hi is the number of RNS channels [3].
The aforementioned methods for conversion rely in opera-
tions whose operands have the same size of X , whereas the
channel arithmetic only requires arithmetic for the channel
width k. Therefore, in order to reuse the k-bit wide comput-
ing resources, these methods are mapped to multiprecision
versions that split the large operands by k-bit limbs [6].

3. RELATION TO PRIOR WORK

Two different approaches have been proposed to design ac-
celerators for modular arithmetic based on RNS [7, 8]. In [7]
an accelerator for EC cryptography over a finite field GF (p)
with p prime was proposed. This accelerator consists of three
main components: i) an RNS forward converter, ii) a reg-
ister file connected through buses to the channel arithmetic
units, and iii) an RNS reverse converter followed by a pro-
jective to affine converter (EC coordinates conversion). In
this architecture the multiplication is performed by a Horner
scheme and no optimizations are introduced regarding the re-
ductions. An accelerator dedicated to the modular exponen-
tiation applied to the Rivest-Shamir-Adleman (RSA) crypto-
graphic protocol was proposed in [8]. It is based on an ar-
chitecture composed by as many multiply-accumulate units
as the number of RNS channels connected to each other in a
ring shape. Each one of these units is fed by a Random Access
Memory (RAM) that stores the input dependent data and a
Read-Only Memory (ROM) that stores the required constants.
This architecture implements the RNS version of the modular
multiplication with reduction by using a BE approach such
as the one herein presented. In order to handle the required
conversions between bases the conversion offset values of α̂j ,
similar to the one in Algorithm 1, are computed by a dedicated
unit in each channel. This architecture was updated to support
the EC point multiplication used in EC cryptography [1]. Al-
though all these architectures allow one to explore the RNS
properties toward a more efficient design of the accelerators,
they consist of dedicated implementations that only suit that
particular application.

The architecture herein proposed is of the type proposed
in [8]. However the herein proposed architecture is pro-
grammable and scalable, enabling the support of modular
arithmetic employing a general-purpose approach.

4. A SCALABLE ARCHITECTURE

The architecture proposed in this work is presented in Fig-
ure 2. The architecture consists of several Processing Elements
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Fig. 2: Proposed architecture.

(PEs) connected as a ring, each one responsible for computing
all the arithmetic for one of the RNS channels in the two bases
B1 and B2. The architecture contains one input buffer and
one output buffer, implemented as First-In First-Out (FIFO)
queues, and are the only component that a host system has
to interface with. There is a dedicated unit (’α accumulator’)
that computes the RNS conversion offset (α̂j) required for
the BE method in Algorithm 1. An accumulator to aid in the
required final conversion to binary is also included, feeding
the output buffer with the already converted data (there is no
other overhead for computing the RNS forward and reverse
conversions). The control is assured by microcoded instruc-
tions streamed into the hardware structure that operates with
a Single-Instruction-Multiple-Data (SIMD) approach. Given
that the microcode is vertical there is no need of an instruction
decoding stage.

The shape of the architecture is mainly motivated by the
need to improve the performance of the reduction, which is
the most demanding operation in the RNS based arithmetic.
This operation has O(h2

i ) complexity, with hi the number of
channels (O(hi) in a single channel), due to the summation
in the steps 2 and 5 of Algorithm 1; in these steps each one
of the channels e needs to gather data from the other chan-
nels j. It is of practical interest to maintain a common control
for all the PEs: while computing

∑h1

j=1
qj,1λej the value of

qj,1 is forwarded to the next channel after its contribution is
stored in the summation result. Once a value qj,1 completes a
round in the the ring, all the PEs have all the information they
need to proceed with the computation. Another, yet not less
important, characteristic of the architecture is the scalability,
which introduces extra flexibility in the design and the possi-
bility of tunning it. Scalability can identified in the variety of
algorithms and operand sizes the architecture supports. It is
straightforward to trade-off between the number of PEs and
the datapath’s size inside PEs, allowing the prospection of the
best configuration restricted to the timing and resource con-
straints as well as balance parallelism gains with overheads
due to the RNS implementation (RNS forward and reverse
conversions, synchronization, data communication between
PEs). Figure 3 illustrates the effect of these overheads in the
performance. The performance due to parallelism needs to be

time

MIPS

Algorithm Compexity Computation Overhead

(a) (b) (c) (d)

Fig. 3: Illustration of the complexity and computation time
variation with the number of parallel flows: a) the algorithm
is computed by a single serial flow; b) the algorithm is split by
4 parallel flows but the performance is similar to the approach
with a single flow due to the overheads; c) the algorithm is
split by 5 parallel flows and the acceleration due to the paral-
lelization compensates the increase in the computation over-
head; and d) the algorithm is split by 6 parallel flows and the
computation overhead supersede the performance gain of the
parallelization.
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Fig. 4: The PE: the basic processing element.

balanced with the increasing complexity of operations such
as the modular reduction.

Figure 4 sketches the structure of a typical PE for the ar-
chitecture in Figure 2. The PE includes a dual port RAM that
is responsible for storing data, input/output and temporary,
as well as the RNS constants, which is directly addressed
by the broadcasted instructions. It is possible, instead of
the RAM, to adopt a RAM+ROM construct where the ROM
would be used only for storing the required constants. In the
RAM+ROM configuration both memory types reside in the
same address space and can be interpreted as a single mem-
ory. The PEs include the required resources for computing
the arithmetic. These resources include a binary multiplier
and adder, as well as two bitwise operation blocks which
are responsible for multiplexing, logical complement, and
padding. Pipeline can be used to increase throughput. There
are some data forwarding paths that reduce the number of
clock cycles per operation. All the components can be easily
configured to any datapath bit-width, i.e. a different value k.
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Fig. 5: Normalized experimental results for a modular ex-
ponentiation (RSA) and EC point multiplication on a Xilinx
Virtex 4 FPGA. The value 1 stands for the most competitive
configuration for each one of the metrics.

5. EXPERIMENTAL RESULTS

Two typical cryptographic operations that make extensive use
of MA, a modular exponentiation used in the RSA [9] and
an EC point multiplications [10], are implemented with the
proposed architecture so as to support its experimental eval-
uation. We herein address 512-bit and 224-bit wide modular
computations for each target operation, respectively. For both
operations, highly efficient dedicated processors have been
proposed in the literature [10, 11]. Details about these algo-
rithms can be found in [6].

In order to obtain the implementation, the architecture and
its generic components were described with technology in-
dependent VHDL (Behavioral) along with the RAMs’ con-
tents. The Synplify synthesis tool (version E-2010.09-SP2)
was used to infer the main architecture building blocks from
the generic description. The Xilinx ISE place and route tools
(version 12.4) was used to obtain the programming bitstream
targeting a Xilinx Virtex 4 (part xc4vsx55ff1148-12) FPGA
technology. Note that other target technologies can also be
considered giving the behavioral specification employed in
the design.

Several configurations of the architecture with a differ-
ent number of PEs were obtained for each operation. Fig-
ure 5 highlights the trade-off between number of PEs and
their complexity for the proposed architecture. Concerning
latency, low-width channels correspond to more channels,
which results in more clock cycles to implement the BE (ring
size increases while the channel width decreases). For larger
width channels the number of clock cycles decreases, but
since the complexity of the PEs increase thus the operating
frequency decreases. Hence, as Figure 5a shows, the mini-
mum latency is achieved at 96 and 64-bit channel width mark
for the RSA and EC, respectively. Concerning the RAM
resources, the FPGA has fixed sized Block RAMs that are
inferred by the synthesis tool and can be configured with
up to 32-bit per position. Hence, some widths, multiples of

32, will better suit the Block RAMs configuration and the
behavior in Figure 5c is not monotonic. The DSP48 slices in
the target FPGA are only used to multiply since they possess
a dedicated multiplier and considering a high-level synthesis
as technology agnostic, no extra effort in fully utilizing the
FPGA DSP48 slices capabilities was taken. The number of
required DSP48 slices increases when the channel width is
increased, as Figure 5d shows. The number of slices is a
trade-off between the number of PEs and the cost of a single
PE, since they are used for the additions and bitwise op-
erations, as well as in DSP48 slices interconnections. The
slices are expected to increase for large values of the channel
width as an effort of the synthesis tool to enhance timing.
The number of resources of the RSA application (the op-
erations’ modulus is 512-bit wide) is larger than the EC’s
(the operations’ modulus is 224-bit wide), but since the re-
sources are strongly related with the channel implementation,
the normalized figures for the resources are similar for both
applications.

Given that no technology dependent optimizations were
introduced in the implementation, it competes with highly
optimized implementations in the literature in terms of flex-
ibility but not in terms of performance. Notwithstanding,
some performance values are stated: a modular exponentia-
tion can be obtained in 1.6 ms with 12,181 slices, 24 Block
RAMs and 216 DSP48 slices, and an EC point multiplica-
tion is accomplished in 5.8 ms with 3,435 slices, 12 Block
RAMs and 64 DSP48 slices. As a reference, to the best of the
authors’ knowledge, [11] and [10] provide the fastest FPGA
implementations for the modular exponentiation and EC point
multiplication, respectively: in [11] a 512-bit modular expo-
nentiation takes 261 µs using 3,983 slices, 7 Block RAMs,
and 17 DSP48 slices whereas in [10] 365 µs, 1,580 slices,
11 Block RAMs, and 26 DSP48 slices are required for an
EC point multiplication. Both implementations target also the
Xilinx Virtex 4 technology.

6. CONCLUSIONS

This paper proposes an architecture to accelerate modular
arithmetic algorithms with the RNS. The properties of this
architecture potentiate its scalability and adaptability to any
modular arithmetic algorithm. Given the generic building
blocks that construct the architecture and its programmable
features, the implementation and the tunning are easily ac-
complished. Furthermore, these characteristics validate the
architecture as a suitable entity to support a high-level syn-
thesis approach for generic modular arithmetic algorithms.

A case study of the architecture targeting an FPGA im-
plementation (Xilinx Virtex 4 technology) suggests that it
combines competitive performance figures regarding the re-
lated state of the art and a systematic implementation method
which accelerates the design. Future work comprises the
development of a library of optimized components for sev-
eral FGPA and ASIC technologies that can be used in the
architecture to improve its performance.
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