
DYNAMICALLY GENERATING FFT CODE ON MOBILE DEVICES

Anthony M. Blake

Department of Computer Science
The University of Waikato

Hamilton, New Zealand

ABSTRACT

This paper characterizes the benefits of dynamic code generation
when computing the discrete Fourier transform (DFT) on mobile de-
vices. A library called FFTS has recently been shown to be faster
than FFTW, Intel IPP and Apple vDSP, partly due to the use of
program specialization and dynamic code generation. However, dy-
namic code generation is prohibited on some mobile platforms for
security reasons. In this work, FFTS was modified to avoid dy-
namic code generation, while making every effort to maximize per-
formance, and the results of benchmarks on Apple A4, A6, Nvidia
Tegra3 and Samsung Exynos4 based devices show that disabling dy-
namic code generation in FFTS decreases performance by as much
as 25%, depending on the device and the parameters of the trans-
form.

Index Terms— Mobile Computing, Fast Fourier Transforms,
Digital Signal Processing, Dynamic Compiler

1. INTRODUCTION

Recent benchmark results have shown that a library called FFTS
(“The Fastest Fourier Transform in the South”) represents the state-
of-the-art when computing the discrete Fourier transform (DFT) on
ARM based mobile devices [1]. FFTS has been benchmarked on a
range of recent Intel x86 and ARM machines, and is, in almost all
cases, faster than self-tuning libraries such as FFTW (“The Fastest
Fourier Transform in the West”), and even vendor-tuned libraries
such as Intel Integrated Performance Primitives (IPP) and Apple
vDSP (ibid.). Furthermore, FFTS binaries are smaller than those of
other libraries; compared to FFTW, two orders of magnitude smaller.

The performance and size of FFTS is, at least in part, due to the
use of program specialization and dynamic code generation. When
FFTS initializes a specific transform at run time, e.g., an audio pro-
cessing application might require a forward real-valued 1024 point
1-D transform, it performs the calculations that depend on the pa-
rameters which have just been fixed, and generates specialized ma-
chine code to compute the remainder of the calculations which de-
pend on the data. The idea of specializing program was formulated
and proven by Kleene more than 50 years ago [2].

Despite the benefits afforded by dynamic code generation, Ap-
ple and Microsoft’s mobile app stores have a policy of rejecting apps
that use dynamically generated code, ostensibly to improve security
and prevent certain exploits. Android apps, in contrast, do not have
the same restrictions.

In this work, FFTS is modified to work without the use of dy-
namic code generation, thus allowing it to be used on platforms with
restrictive security features. When modifying the code, every effort
was made to maximise performance. The resulting code is com-
pared to the original FFTS in benchmarks, and the difference in per-

formance illustrates the performance cost of security features which
prohibit dynamic code generation.

2. BACKGROUND

Self-tuning libraries such as FFTW [3, 4, 5] and UHFFT [6] em-
ploy a planner to search the space of all possible factorizations of
several highly parameterized FFT algorithms to find a plan that has
the smallest execution time. Each plan is composed of references to
blocks of straight-line code, called codelets, which are automatically
generated and optimized at a low level during compilation. FFTW
has a library of over 150 codelets, each corresponding to a subtrans-
form which may be as large as 128 points.

FFTW and UHFFT employ dynamic programming [7] to search
the space of possible factorizations, exploiting the fact that each plan
is divided into subproblems and each of the subproblems considered
during the search is essentially the same. The primary difference
between FFTW and UHFFT is that UHFFT performs some calibra-
tion and initializes a database of execution times during installation,
while FFTW only performs calibration at run time.

More recently, it has been demonstrated that the performance
of self-tuning libraries such as FFTW is primarily due to the use of
program specialization and highly optimized codelets, rather than
machine-specific calibration [8]. In these experiments, specialized
code for a range of transforms was statically generated, using several
automatically generated codelets, and performance of the resulting
code was, in almost all cases, faster than FFTW and even vendor-
tuned libraries on a range of x86 and ARM machines (ibid.).

However, although the experiments with statically generated
code demonstrated that the relationship between machine-specific
calibration and performance was somewhat tenuous, there were
some limits to the practicality of statically generating specialized
code for specific transforms. First, the parameters of the transforms
required by an application had to be known at compile time, and
second, if a large range of transforms was required, or even just one
very large transform, the size of the binary became an issue.

In previous work, the limitations of statically generated code
were overcome by performing program specialization at run time
and dynamically generating specialized machine code, and the re-
sulting library was called FFTS [1]. Several small, hand optimized
codelets coded in assembly are dynamically modifed and used to
compose specific transforms at run time, and at least some FFTS’s
performance can be attributed to the quality of these small codelets,
independent of the fact that the code is being dynamically special-
ized.

In this work, FFTS is further developed so as to have the option
of disabling dynamic code generation, in a way that has minimal
impact on performance. Benchmark experiments on two iOS devices

2568978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

0 4 8 12 16 20 24 28 32 36 40

0

5

10

15

20

25

30

35

40

45

50

55

60

Number of codelets computed

M
em

or
y

ad
dr

es
s

(w
or

ds
)

output
input

Fig. 1. Memory access pattern of a size 64 decimation-in-time
depth-first recursive conjugate-pair FFT operating out-of-place. The
loops have been vectorized. Figure 2 shows the same transform fol-
lowing modifications to increase memory locality.

and two Android devices are performed to evaluate the performance
cost of the changes.

3. THE FASTEST FOURIER TRANSFORM IN THE SOUTH

FFTS uses a variant of the split-radix algorithm [9] called the
conjugate-pair algorithm [10]. It was first described with the claim
that it had set a new record for the minimum number of floating point
operations required to compute the FFT, but this was later shown to
be incorrect [11, 12, 13]. More recently, James van Buskirk used
it as the basis for the Tangent FFT, which does actually reduce the
operation count [14].

Rather than computing the FFT iteratively, as most traditional
implementations do, FFTS uses a depth-first recursive implementa-
tion, which has theoretical advantages in terms of cache utilization,
and has been shown to be asymptotically optimal [15].

A point of difference between FFTS and other depth-first recur-
sive implementations is that FFTS first computes the sub-transforms
at the leaves of the computation iteratively, before computing the rest
of the transform, in order to improve the spatial locality of memory
accesses [1]. Figure 1 shows the memory access pattern of an out-
of-place decimation-in-time (DIT) algorithm computed recursively,
while Figure 2 shows the memory access pattern of the same trans-
form if the leaves are first computed iteratively such that the accesses
to the input data are contiguous.

When initializing a specific transform at run time, FFTS emits
code for computing the leaves of the transform iteratively, and then

0 4 8 12 16 20 24 28 32 36 40

0

5

10

15

20

25

30

35

40

45

50

55

60

Number of codelets computed

M
em

or
y

ad
dr

es
s

(w
or

ds
)

output
input

Fig. 2. Memory access pattern of a modified size 64 depth-first re-
cursive conjugate-pair FFT, where the leaves of the computation are
sorted to improve spatial locality and computed before the rest of the
transform. The leaves of the computation can now be computed iter-
atively with three loops, which are easily vectorized. Figure 1 shows
the same transform without modification.

emits a sequence of function calls to compute each of the loops in
the rest of the transform.

Because the conjugate-pair algorithm decomposes a transform
into smaller sub-transforms of two different sizes, two different sizes
of sub-transforms occur at the leaves of the computation. When two
adjacent sub-transforms of the smaller size are combined, and all
the sub-transforms are sorted according to the input addresses they
access, the two types of leaf sub-transform are partitioned into three
groups of approximately equal size. Thus these sub-transforms can
be computed iteratively with three loops.

For example, in Figure 2 the first 16 codelets correspond to the
16 sub-transforms at the leaves of the recursion. The first 6 codelets
compute size 4 sub-transforms, the next 5 codelets consist of two
size 2 codelets combined, and the final 5 codelets are again size 4.

After emitting code for the leaves of the transform, the rest of
the computation is flattened into a sequence of function calls, each
corresponding to the loop of sub-transforms computed at each node
of the recursion.

Where possible, constants are pushed into the immediates of in-
structions, and the resulting dynamically generated function for a
specific transform only uses the stack to save registers in the pro-
logue and epilogue, and is not used inside the function.

2569

2 4 8 16 32 64 128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144

transform size

0

500

1000

1500

2000

sp
ee

d
(m

flo
ps

)

ffts
ffts-static
apple-vdsp
libav
fftw3-patient
fftw3-estimate

Fig. 3. Performance of FFT code on an iPod Touch 4G, which uses
the Apple A4 single-core SoC.

4. DISABLING DYNAMIC CODE GENERATION

Dynamic code generation was disabled by replacing the generation
of specialized functions at run time with the general functions. As
described in the previous section, FFTS computes the transform in
two parts: first, the sub-transforms at the leaves of the computation
are computed iteratively, and second, the rest of the transform is
computed recursively.

The sign of the primitive root-of-unity is a parameter which fre-
quently occurs within the body of the codelets, and it has a negative
impact on performance if it is a parameter implemented with either
conditional logic or as a variable that is unconditionally exclusive
or’ed with data to change the sign. Because there are only two pos-
sible assignments for the sign, it was determined to be an acceptable
performance vs. code size tradeoff to implement two copies of all
the code: one copy which is hardcoded for forwards transforms, and
the other which is hardcoded for inverse transforms. During ini-
tialization, the sign is used to determine which code path should be
assigned to a function pointer.

Due to the skewed nature of the conjugate-pair decomposition,
the counts of the two types of sub-transforms found at the leaves
of the recursion oscillate as the size of the transform is increased.
This effects the relative placement of a residual sub-transform which
doesn’t evenly divide into the loops (when using SIMD, several iter-
ations are computed in parallel). In this case, the use of conditional
logic was again avoided in favour of two code paths in order to max-
imise performance.

5. RESULTS

Two versions of FFTS were benchmarked on four ARM based mo-
bile devices, along with a few other libraries for reference, using the
benchmark methods described in [8]. The benchmarks presented
here are configured to use NEON and be single threaded, out of
place, complex to complex and are in one dimension.

2 4 8 16 32 64 128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

transform size

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

sp
ee

d
(m

fl
op

s)

ffts
ffts-static
apple-vdsp
libav
fftw3-patient
fftw3-estimate

Fig. 4. Performance of FFT code on an iPhone 5, which uses the
Apple A6 dual-core SoC.

2 4 8 16 32 64 128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

transform size

0

500

1000

1500

2000

sp
ee

d
(m

fl
op

s)

ffts
ffts-static
fftw3-estimate
java-radix2

Fig. 5. Performance of FFT code on an Asus Eee Pad TF201, which
uses the Nvidia Tegra 3 quad-core SoC.

The code which uses dynamic code generation is labeled as
‘ffts’, while the code described in Section 4 is labeled as ‘ffts-static’.

Figures 3 and 4 plot the performance of code running on two
Apple devices. Applications which use dynamic code generation
can be developed and tested on iOS based devices, however Apple’s
policy is to reject these apps if they are submitted to the App Store
for distribution.

It can be noted that FFTS running on the A6, either in static
or dynamic mode, can compute large transforms faster than some
workstations, for example, Intel IPP running on an Intel Core 2 Duo
P8600 only manages about 2500 MFLOPS for a size 262144 trans-

2570

2 4 8 16 32 64 128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

transform size

0

500

1000

1500

2000

2500

sp
ee

d
(m

fl
op

s)

ffts
ffts-static
fftw3-estimate

Fig. 6. Performance of FFT code on a Samsung Galaxy S III, which
uses the Exynos 4 quad-core SoC.

Name of FFT library Size (kilobytes)

FFTW3 2260
FFTS 33
FFTS-static 44

Table 1. Size of FFT libraries compiled for Android.

form.
Figures 5 and 6 plot the performance of code running on two

Android based devices. FFTW in patient mode did not run correctly
on these devices, and was taking several hours to create plans larger
than a few hundred points.

Comparing Figures 4 and 6, it can be seen that single thread per-
formance on the iPhone 5 is much faster than the Samsung Galaxy S
III, however it should be noted that the Exynos 4 SoC in the Galaxy
S III is quad core.

More code is required for the static implementation of FFTS, as
shown in Table 1. However, compared to FFTW3, the static imple-
mentation is still two orders of magnitude smaller.

The fact that the static implementation of FFTS is faster than
other libraries suggests that FFTS has an algorithmic advantage.

6. CONCLUSIONS AND FUTURE WORK

In this work, FFTS was modified to support operation on platforms
where dynamic code generation is prohibited for security reasons,
which includes iOS and Windows Phone 8. The results of bench-
mark experiments show that removing dynamic code generation de-
creases performance by as much as 25%, depending on the device
and the size of the transform.

FFTS currently computes complex, real-valued and multi-
dimensional transforms, but only for power-of-two sizes, and future
work will apply the techniques described in this paper to arbitrary
sized transforms and multi-threaded transforms.

FFTS has been released as open source code under a permis-
sive license,1 and currently runs on Linux, OS X, iOS, Android and
Windows Phone 8, on the Intel x86 and ARM architectures.

7. ACKNOWLEDGMENT

I am grateful to Ian Witten and Craig Taube-Schock for allowing me
the use of their smartphones to run the benchmarks in this paper.

8. REFERENCES

[1] A.M. Blake, I.H. Witten, and M.J. Cree, “The fastest Fourier
transform in the south,” IEEE Trans. on Signal Processing,
(submitted to).

[2] S.C. Kleene, NG de Bruijn, J. de Groot, and A.C. Zaanen, “In-
troduction to metamathematics,” 1952.

[3] M. Frigo and S.G. Johnson, “FFTW: An adaptive software
architecture for the FFT,” in Acoustics, Speech and Signal
Processing, 1998. Proceedings of the 1998 IEEE International
Conference on. IEEE, 1998, vol. 3, pp. 1381–1384.

[4] M. Frigo and S.G. Johnson, “The design and implementation
of FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, pp. 216–
231, 2005.

[5] S. G. Johnson and M. Frigo, “Implementing FFTs in practice,”
in Fast Fourier Transforms, C. S. Burrus, Ed., Connexions,
chapter 11. Rice University, Houston TX, September 2008.

[6] D. Mirkovic and L. Johnsson, “Automatic performance tuning
in the UHFFT library,” Lecture notes in computer science, pp.
I–71, 2001.

[7] R.L. Rivest and C.E. Leiserson, “Introduction to algorithms,”
1990.

[8] A.M. Blake, Computing the fast Fourier transform on SIMD
microprocessors, Ph.D. thesis, University of Waikato, New
Zealand, 2012.

[9] R. Yavne, “An economical method for calculating the dis-
crete Fourier transform,” in Proceedings of the December 9-
11, 1968, fall joint computer conference, part I. ACM, 1968,
pp. 115–125.

[10] I. Kamar and Y. Elcherif, “Conjugate pair fast Fourier trans-
form,” Electronics Letters, vol. 25, pp. 324, 1989.

[11] R. A. Gopinath, “Conjugate pair fast Fourier transform,” Elec-
tronics Letters, vol. 25, pp. 1084, 1989.

[12] A. M. Krot and H. B. Minervina, “Conjugate pair fast Fourier
transform,” Electronics Letters, vol. 28, pp. 1143, 1992.

[13] H-S. Qian and Z-J. Zhao, “Conjugate pair fast Fourier trans-
form,” Electronics Letters, vol. 26, pp. 541, 1990.

[14] D. Bernstein, “The tangent FFT,” Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes, pp. 291–300, 2007.

[15] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran,
“Cache-oblivious algorithms,” in Foundations of Computer
Science, 1999. 40th Annual Symposium on. IEEE, 1999, pp.
285–297.

1Available at http://www.cs.waikato.ac.nz/∼ablake/ffts

2571

