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ABSTRACT

In this paper, we present a speech-based emotion recognition frame-
work based on a latent Dirichlet allocation model. This method as-
sumes that incoming speech frames are conditionally independent
and exchangeable. While this leads to a loss of temporal structure, it
is able to capture significant statistical information between frames.
In contrast, a hidden Markov model-based approach captures the
temporal structure in speech. Using the German emotional speech
database EMO-DB for evaluation, we achieve an average classi-
fication accuracy of 80.7% compared to 73% for hidden Markov
models. This improvement is achieved at the cost of a slight increase
in computational complexity. We map the proposed algorithm onto
an FPGA platform and show that emotions in a speech utterance of
duration 1.5s can be identified in 1.8ms, while utilizing 70% of the
resources. This further demonstrates the suitability of our approach
for real-time applications on hand-held devices.

Index Terms— emotion recognition, affective computing, latent
Dirichlet allocation, FPGA implementation

1. INTRODUCTION

Low-power hand-held devices today are capable of supporting
high-end applications related to speech or speaker recognition or
video-based activity recognition. Looking forward, we envision
such devices to be capable of recognizing a user’s emotional state
and to play a significant role towards improving human-machine
interaction. Speech has proven to be a good indicator of emo-
tional content [1], with applications in diverse areas such as medical
analysis, security and surveillance, personal memory aids and life-
logs [2, 3]. For successful speech-based emotion recognition in
hand-held devices, the challenge lies in the design of algorithms
to represent emotions with high accuracy and low implementation
complexity.

Experiments in speech-based emotion analysis have identified a
3-D space, comprising of activation, valence and dominance, to pro-
vide a good representation of the underlying emotional content [4].
Activation indicates the arousal level in speech. For example, anger
shows higher activation compared to sadness. Valence attributes to
an emotion’s positive or negative nature. Thus, happiness has a pos-
itive valence compared to disgust. Dominance indicates the strength
of the perceived emotion. For instance, fear is a stronger emotion
compared to boredom, thus, more dominant. The primary goal in
emotion recognition is the identification of emotions either as dis-
crete categories, such as happiness vs. anger, or a continuous repre-
sentation of the emotional state in this 3-D space.
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A typical speech-based emotion recognition system is shown in
Figure 1. Raw speech is indexed by low-dimensional vectors, com-
monly known as features, followed by modeling via well-known
methods such as hidden Markov models (HMMs) [5] or Gaussian
mixture vector auto regressive models (GMVARs) [6]. These meth-
ods have shown to characterize the temporal evolution of features
well and demonstrate a performance suitable for the task of emotion
recognition. However, such temporal models are prone to severe
degradation in real-world scenarios, where the probability of inter-
ruption by ambient sounds or multiple speakers is high. These limi-
tations can be overcome by enforcing higher order temporal depen-
dencies, however, at the cost of increased computational complexity.

In this paper, we address this issue by modeling the emotional
content via latent Dirichlet allocation (LDA) [7]. LDA is an un-
supervised, hierarchical Bayesian model for discrete data, originally
intended for document representation. A corpus of emotional speech
can be modeled via LDA. An utterance represents a document and
its derived features represent the discrete data (observations). Each
document is modeled as a mixture over multiple hidden topics; each
topic, in turn, is a mixture over discrete observations. Contrary
to the conventional approach in HMMs, LDA simplifies the model
by ignoring temporal structure, and yet it captures significant intra-
document statistical structure.

Our contributions mainly include the adaptation of LDA coupled
with support vector machines (SVMs) for a discrete categorization
of emotions. Our proposed approach clearly outperforms HMM or
GMVAR-based methods in terms of recognition accuracy. More-
over, the simplicity of its implementation and amenability to paral-
lelization makes it highly appealing for real-time applications. This
claim is validated by an FPGA-based implementation of the com-
plete framework.

2. BACKGROUND
The process of emotion recognition from speech is illustrated in Fig-
ure 1. Prosodic features including pitch or energy contours, voice
quality features such as speaking rate or harshness and spectral fea-
tures such as Mel frequency cepstral coefficients (MFCCs) have all
been identified to suitably characterize the emotional content [8].
We have chosen energy and MFCCs as features because of their
widespread use in speech recognition, thus allowing for better inte-
gration with existing systems. A commonly used feature extraction
procedure is described as follows. Raw speech is high-pass filtered
with a pre-emphasis coefficient of 0.97. Hamming windows of dura-
tion 25 ms are used to extract features at a rate of one feature vector
every 10 ms. The features include log energy and the first 12 MFCCs
and their corresponding first and second derivatives, resulting in a
39-dimensional vector. The computational complexity of feature ex-
traction for 25ms of speech is given in Table 1, where operations de-
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Fig. 1. Block diagram of a speech emotion recognition system.

Table 1. Computational complexity of feature extraction.
Feature extraction Operations

Pre-emphasis 400

Hamming window 400

Log energy 400

MFCC 19424

Total 20624

note the number of multiplications. Generally, feature extraction is
followed by a post-processing step. This involves principal compo-
nent analysis (PCA) or vector quantization (VQ) routines for further
dimensionality reduction.

The distribution and variation of such features is modeled using
HMMs, GMVAR or LDA as proposed here. The choice of classifier
is mainly dependent on the application requirements. For instance,
support vector regression (SVR) is appropriate if a continuous repre-
sentation of the user’s emotional state is desired, while SVMs or ar-
tificial neural networks (ANNs) are more suitable for a discrete cat-
egorization of emotions. This overall process of learning the model
and classifier parameters is usually performed offline over a fixed
corpus of utterances. Recognition is described as the classification
or representation of emotions in unknown utterances using the learnt
parameters. For seamless human-machine interaction, it is impera-
tive that this step be performed online and in real-time.

3. LATENT DIRICHLET ALLOCATION

3.1. Background

LDA is a generative probabilistic model for a corpus. A graphical
model for the same is shown in Figure 2. The generative process for
each document d in a corpus is as follows.

• Choose θ ∼ Dirichlet(α)
• For each word wn in the document -

– Choose a topic zn ∼ Multinomial(θ)
– Choose a word wn ∼ p(wn|zn, β)

Here, a document d is a sequence of N words such that
d = (w1, ..., wN ). A corpus is a collection of D such docu-
ments, d1, ..., dD . Each word wn is defined to be an item from a
vocabulary indexed by {1, ..., V }. θ is a K-dimensional mixture
over K latent topics. zn is a K-dimensional unit-basis vector over
topics. The distribution of words over topics is parameterized by a
K × V matrix β. α is a corpus-level parameter sampled once for
the entire collection of documents.

α θ z w

β

N

D

Fig. 2. A graphical model for latent Dirichlet allocation.

1: Initialize φnk = 1/K for all k and n.
2: Initialize γk = α+N/K for all k.
3: repeat
4: for n = 1 : N do
5: for k = 1 : K do
6: φnk = βkwnexp(Ψ(γk))
7: end for
8: Normalize φn.
9: end for

10: γ = α+
∑N

n=1 φn

11: until convergence

Fig. 3. A variational approximation algorithm for LDA.

Parameters α, β and K are estimated and fixed during training.
In the recognition step, LDA aims at inferring the latent variables
θ and z given the words (observations) w for each document, i.e.
p(θ, z|w,α, β). Exact inference in LDA is intractable. A variational
approximation method is described in [7]. Briefly, the posterior is
modeled by a variational distribution q(θ, z|γ, φ). γ and φ are free
variational parameters, iteratively used to minimize the Kullback-
Leibler (KL) divergence between q and the posterior, as in (1).

(γ?, φ?) = arg min
(γ,φ)

D(q(θ, z|γ, φ)||p(θ, z|w,α, β)) (1)

An outline of the algorithm to infer (γ, φ) and consequently (θ,z)
is described in Figure 3. Here, Ψ denotes the digamma function
obtained by taking the first-derivative of a log-gamma function.

3.2. Application to Emotion Recognition

For emotion recognition, the speech counterparts of words, topics
and documents used in LDA are as follows. We define a speech
utterance as the equivalent of a single document. By applying slid-
ing and overlapping windows every 10ms, followed by feature ex-
traction, each utterance is represented as a temporal sequence of p-
dimensional feature vectors. These features still lie in Rp and are
continuous-valued. To discretize the feature space, VQ is performed
using a codebook of V feature vectors. Thus, each utterance (docu-
ment) is a collection of discrete, vector quantized features (words).

Training, which is performed offline, involves the estimation of
LDA model parameters α and β from the training portion of the
corpus via an Expectation-Maximization (EM) algorithm. The pos-
terior distribution over hidden topics, θ, for each utterance is also
inferred during this step. Based on the clustering property of LDA,
speech utterances with similar emotional content have an approxi-
mately similar distribution over θs, while the opposite holds true for
emotions belonging to different categories. An SVM using a linear
kernel is chosen to train a classifier with θ as the input feature vector.
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Fig. 4. Average classification accuracy using LDA for vocabulary
size V = 64 and 512.

The estimated LDA parameters are used to infer θs for unseen data
followed by recognition using the trained SVM parameters.

4. IMPLEMENTATION RESULTS

For evaluation of our proposed approach, the freely available Ger-
man emotional speech database (EMO-DB) [9] is used. It consists
of non-spontaneous, acted emotions by 10 speakers, 5 male and 5
female. Each utterance is identified by a single emotion belonging
to one of seven categories - neutral (N), happiness (H), anger (A),
fear (F), sadness (S), boredom (B) or disgust (D). Only 493 utter-
ances with a minimum of 80% human recognition accuracy and 60%
naturalness are chosen for our experiments. Feature extraction and
post-processing is performed according to the procedure described
in section 2, resulting in a 13-dimensional feature vector for every
25ms of speech. Training is performed using 70% of the total utter-
ances and the algorithm is evaluated on the remaining utterances.

4.1. LDA-based Recognition Results

HMMs are used as the baseline to evaluate the proposed approach.
An HMM, with 6 states and 2 mixtures per state, is trained for each
emotion category using the HTK Speech Recognition Toolkit [10].
The average recognition accuracy is recorded as 73% for this case. In
the case of LDA, the number of topics, K, and the vocabulary size,
V , are manually set and jointly affect recognition performance. A
multi-class, linear kernel-based SVM is trained using a one-versus-
rest approach for classification.

Figure 4 shows the variation of recognition accuracy with K for
different values of V , averaged over 50 independent runs. For a
small-sized vocabulary such as V = 64, LDA performs worse than
HMM for most values of K, while approaching the baseline accu-
racy in certain cases. For V = 512, LDA always performs better
than HMM once K exceeds 50 topics. For K less than 50, the topics
fail to efficiently capture the statistical information between features
resulting in poorer performance than HMMs. As the vocabulary size
V increases, VQ distortion reduces, thus, leading to improved par-
titioning. This is evident from the improvement in recognition per-
formance as V increases from 64 to 512. For V = 64, the maxi-
mum accuracy of 74.1% is achieved when K = 130; for V = 512,
the maximum accuracy is higher at 80.7% and is achieved when
K = 60. The latter case marks a 10.54% improvement over HMM-
based recognition. By ignoring the temporal structure, LDA is able

Table 2. Normalized confusion matrix for LDA
True Recognized Emotion

N A H F S B D

N 0.64 0 0 0 0.13 0.23 0

A 0 1.00 0 0 0 0 0

H 0.05 0.25 0.60 0.05 0 0 0.05

F 0.12 0.12 0 0.70 0 0.06 0

S 0.06 0 0 0 0.94 0 0

B 0.18 0 0 0 0.05 0.77 0

D 0 0 0 0 0 0 1.00
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Fig. 5. Average classification time (software) for an utterance of
duration 1.5s for vocabulary size V = 64 and 512.

to model higher-order dependencies in data compared to HMMs,
thus providing better recognition performance.

Table 2 describes the confusion matrix between different emo-
tions for our approach. If emotions are grouped into two distinct
categories based on high (A, H, F) and low (N, S, B, D) arousal, we
see from Table 2 that misclassification is more prominent within a
group than across groups. For example, 30% of happiness-related
utterances are classified as anger and fear, whereas only 10% of the
utterances are classified as low-arousal emotions such as neutral or
disgust. These results are consistent with findings in previous works
[11].

4.2. Software Implementation

The feature extraction, post-processing and LDA routines are imple-
mented in C on a Lenovo laptop equipped with an Intel i7 2.7 GHz
quad-core processor and 4 GB RAM. OpenMP [12], a freely avail-
able software for parallel computing, is used to optimize LDA and
achieve speed-up by a factor of 10. A timing comparison of LDA
and HMM for the task of classifying 145 utterances is shown in Fig-
ure 5. The time complexity of LDA is approximately linear in the
number of topics and increases with the vocabulary size as well. For
the classification of an utterance of average duration 1.5s, the HMM-
based approach takes 22.05ms. In contrast, LDA takes 27.5ms for
V = 64, K = 130 and 55ms for V = 512, K = 60, while achiev-
ing a 10.54% improvement in recognition accuracy. The trade-off
between computational complexity and recognition accuracy allows
us to adjust the system performance based on the available resources
and application requirements.
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Table 3. Software and FPGA processing time of proposed system
with V = 512 and K = 60.

Software (ms) FPGA (ms)
Feature extraction 322.1 (82%) 1.26 (70%)
Post processing 15.7 (4%) 0.40 (22%)

LDA 55 (14%) 0.15 (8%)
Total(ms) 392.8 1.81

Table 3 lists the processing time for the software implementa-
tion. Feature extraction, which involves pre-processing, Hamming
windowing and FFT followed by Mel-bank and discrete cosine trans-
form (DCT), accounts for 82% of the total time compared to just
14% for LDA.

4.3. FPGA-based Hardware Implementation

As the size of a database grows, V and K will grow accordingly,
thus increasing the processing time. We consider an FPGA-based
parallel implementation for handling real-time performance of such
systems.

The hardware architecture for the proposed algorithm consists
of two main blocks: feature extraction and LDA inference. Both
blocks are implemented using Verilog HDL and synthesized on Xil-
inx Virtex-5 device (XC5VSX240T). The design is verified using
Modelsim. For word lengths of 16, 20 and 24 bits, the corresponding
classification error rates are 2%, 0.5% and 0% respectively. Based
on these results, a 24-bit fixed-point representation is chosen for the
FPGA implementation.

Table 4 summarizes the FPGA resource utilization for the fea-
ture extraction step. The FIR filter and FFT routines are imple-
mented using Xilinx IP cores. The Mel-bank transform and DCT
multiplications are implemented using DSP slices. The utilization is
fairly low (8%). A pipelined implementation of feature extraction
for 25ms of speech (1 word) takes 841 cycles, while post-processing
takes 265 cycles. With a system clock rate of 100 MHz, the total pro-
cessing period for feature extraction from 1.5s of speech (150 words)
is Tfe = 8.41µs×150 = 1.261ms and that of post-processing is
Tpp = 2.65µs×150 = 0.397ms.

The LDA inference algorithm described in Figure 3 is imple-
mented by a multiple processing element (PE) architecture, where
each PE is assigned to one topic. For the 60-topic system studied
here, there are 60 PEs. The critical step of LDA inference is to obtain
the digamma factor Ψ(γ). One straightforward method is to use a
look up table (LUT). In our experiments, γ ∈ [0.0001, 500] and for a
resolution of 2−14(< 0.0001), the size of LUT is 500×214 = 8MB.
This exceeds the storage space available on the FPGA chip. Alter-
natively, a Taylor series approximation is used as described in [13].
Since the digamma computations are identical for all topics, we im-
plement only one such calculation engine and house it in a central
unit (CU). To avoid access conflicts, we stagger processing times of
the PEs. The other computations in each PE such as division and ex-
ponential functions are implemented using Xilinx CORDIC IP core
and multiplications are implemented using DSP slices.

Resource utilization for the LDA inference engine is shown in
Table 5. Each PE occupies 317 (0.8%) slices and CU occupies 4,183
(11%) slices, thus the total occupied slices is 23,203 (62%). For
an utterance with 150 words, one LDA iteration takes 295 cycles.
Thus, the total processing period for LDA inference (50 iterations)
is TLDA = 2.95µs×50 = 0.147ms. Finally, the total processing time
for an utterance of duration 1.5s is Tfe + Tpp + TLDA = 1.805ms.
Table 3 compares the computation times of the software and FPGA

Table 4. Resource utilization for feature extraction.
Unit Occupied

slices
Slice
Reg.

Slice
LUTs

Block
RAM

DSP

FIR 153 163 111 0 1
Ham 0 0 1 1 1
FFT 1729 1854 1723 3 10
Mel 897 960 6400 1 40
DCT 268 288 1920 1 12
Total 3047 (8%) 3265

(2%)
10155
(6%)

6 (1%) 64
(6%)

Table 5. Resource utilization for LDA inference engine.
Unit Occupied

slices
Slice
Reg.

Slice
LUTs

Block
RAM

DSP

PE 317 1057 977 1 1
CU 4183 13925 7468 1 9
Total 23203

(62%)
77345
(52%)

66088
(44%)

61
(12%)

69
(7%)

implementations. We see that for the V = 512, K = 60 system,
the FPGA implementation is more than 200 times faster than the
software implementation.

For large databases, V and K will be larger. While the feature
extraction time will remain the same, the classification time will
increase linearly. For fixed K, as V increases, the time for post-
processing and LDA will increase linearly. For fixed V , as K in-
creases, only the LDA processing time increases linearly, others are
unchanged. Finally, even for large V = 1024 and K = 180, the
processing time of the FPGA based system is estimated to be only
2.65ms.

5. RELATION TO PRIOR WORK

LDA is primarily intended for modeling and classifying documents
[7], though, it has also been used for diverse tasks such as object
recognition [14], image annotation [15] and human activity recog-
nition [16]. Experimental results on EMO-DB in [5] and [6] report
an average classification accuracy of 73% and 76% for HMM and
GMVAR-based methods respectively. In comparison, LDA neglects
the temporal information and yields an average accuracy of 80.7%.
Previously, FPGA implementations have been explored for speech
recognition using HMMs [17, 18]. To the best of our knowledge,
our work is the first attempt at implementing LDA and the resulting
framework for real-time emotion recognition on an FPGA platform.

6. CONCLUSIONS

In this paper, a complete speech-based emotion recognition frame-
work using LDA and its implementation was presented. LDA was
adapted for the purpose of modeling emotional content. The soft-
ware implementation had timing performance comparable to the
HMM-based approach, while achieving a 10.54% improvement in
accuracy. An FPGA-based implementation of the proposed system
for V = 512 and K = 60 was able to identify emotions in an
utterance of duration 1.5s in 1.8ms. The results presented also show
that the proposed system will be capable of real-time emotion recog-
nition even for large databases. Future work will be directed towards
benchmarking our approach on diverse and larger databases as well
as modifying LDA for joint audio-visual emotion recognition.

2556



7. REFERENCES

[1] R. Cowie and R.R. Cornelius, “Describing the emotional states
that are expressed in speech,” Speech Communication, vol. 40,
no. 1, pp. 5–32, 2003.

[2] M. Shah, B. Mears, C. Chakrabarti, and A. Spanias, “Lifel-
ogging: Archival and retrieval of continuously recorded audio
using wearable devices,” IEEE International Conference on
Emerging Signal Processing Applications, pp. 99–102, 2012.

[3] M. Shah, B. Mears, C. Chakrabarti, and A. Spanias, “A top-
down design methodology using virtual platforms for concept
development,” 13th International Symposium on Quality Elec-
tronic Design, pp. 444–450, 2012.

[4] M. Grimm, K. Kroschel, E. Mower, and S. Narayanan,
“Primitives-based evaluation and estimation of emotions in
speech,” Speech Communication, vol. 49, no. 10, pp. 787–800,
2007.

[5] B. Schuller, B. Vlasenko, F. Eyben, G. Rigoll, and A. Wende-
muth, “Acoustic emotion recognition: A benchmark compar-
ison of performances,” IEEE Workshop on Automatic Speech
Recognition & Understanding, pp. 552–557, 2009.

[6] M.M.H. El Ayadi, M.S. Kamel, and F. Karray, “Speech emo-
tion recognition using Gaussian mixture vector autoregressive
models,” IEEE International Conference on Acoustics, Speech
and Signal Processing, vol. 4, pp. 957–960, 2007.

[7] D.M. Blei, A.Y. Ng, and M.I. Jordan, “Latent Dirichlet alloca-
tion,” The Journal of Machine Learning research, vol. 3, pp.
993–1022, 2003.

[8] D. Ververidis and C. Kotropoulos, “Emotional speech recogni-
tion: Resources, features, and methods,” Speech Communica-
tion, vol. 48, no. 9, pp. 1162–1181, 2006.

[9] F. Burkhardt, A. Paeschke, M. Rolfes, W. Sendlmeier, and
B. Weiss, “A database of German emotional speech,” Pro-
ceedings of Interspeech, pp. 1517–1520, 2005.

[10] S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell,
D. Ollason, V. Valtchev, and P. Woodland, “The HTK book,”
Cambridge University Engineering Department, vol. 3, 2002.

[11] T.L. Nwe, S.W. Foo, and L.C. De Silva, “Speech emotion
recognition using hidden Markov models,” Speech Commu-
nication, vol. 41, no. 4, pp. 603–623, 2003.

[12] L. Dagum and R. Menon, “OpenMP: an industry standard API
for shared-memory programming,” IEEE Computational Sci-
ence & Engineering, vol. 5, no. 1, pp. 46–55, 1998.

[13] M.J. Beal, “Variational algorithms for approximate Bayesian
inference (PhD thesis),” The Gatsby Computational Neuro-
science Unit, University College London, pp. 65–66, 2003.

[14] B.C. Russell, W.T. Freeman, A.A. Efros, J. Sivic, and A. Zis-
serman, “Using multiple segmentations to discover objects and
their extent in image collections,” IEEE Conference on Com-
puter Vision and Pattern Recognition, vol. 2, pp. 1605–1614,
2006.

[15] C. Wang, D. Blei, and F.F. Li, “Simultaneous image classifi-
cation and annotation,” IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1903–1910, 2009.

[16] T. Huynh, M. Fritz, and B. Schiele, “Discovery of activity
patterns using topic models,” Proceedings of the 10th Interna-
tional Conference on Ubiquitous Computing, pp. 10–19, 2008.

[17] E.C. Lin, K. Yu, R.A. Rutenbar, and T. Chen, “Moving speech
recognition from software to silicon: the in silico vox project,”
Proceedings of Interspeech, pp. 2346–2349, 2006.

[18] E.C. Lin, K. Yu, R.A. Rutenbar, and T. Chen, “A 1000-
word vocabulary, speaker-independent, continuous live-mode
speech recognizer implemented in a single FPGA,” Pro-
ceedings of the 15th International Symposium on Field pro-
grammable gate arrays, vol. 18, no. 20, pp. 60–68, 2007.

2557


