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ABSTRACT 

 

We propose a novel method for three-dimensional 

navigation and localization of a land vehicle in a multi-

storey parking-garage. In order to navigate or localize in 3D 
space we also need height information in addition to 2D 

position. Conventionally, an altimeter is used to get the floor 

level/height information. The solution presented in this 

paper uses low cost gyro and odometer sensors, combined 

with a 3D map by means of particle filtering and collision 

detection techniques to localize the vehicle in a parking 

garage. This eliminates the necessity of an altimeter or other 

additional aiding sources such as radio signaling. Thus the 

proposed solution can be used without any additional 

infrastructure devices. Other sources of information, such as 

WLAN signals, can be used to complement the solution if 

and when available. 
 

Index Terms— Particle filters, dead reckoning, land 

vehicles, sensor fusion, indoor environments. 

 

1. INTRODUCTION 

 

Current navigation solutions employ one or several of the 

techniques based on GNSS satellites and receivers, WLAN 

devices, inertial sensors and video [1]. For clear- sky out-

door navigation, GNSS alone will suffice for an accurate 

navigation solution. However in environments where GNSS 
is totally unavailable, such as indoor parking garages; the 

solution involves GNSS or some other means to get initial 

location information (e.g., near the entrance of the parking 

garage), which is then propagated in time using external 

sources, such as wireless radio devices, motion sensors and 

altimeters [2] [3]. 

In this paper, we study 3D map-matching in parking 

garages, a scenario different from the common map-

matching problem in various senses. Firstly, in parking 

garages, GNSS cannot be relied on due to the heavy 

attenuation of satellite signals when penetrating concrete 

structures; therefore, one has to resort to using on-board 
motion sensors such as the odometer of the vehicle. 

Secondly, vehicle heading is less constrained than on roads 

and streets, which poses additional challenges when a 

gyroscope is used for heading estimation. Thirdly, 

positioning in multi-storey parking garages requires the use 

of 3D maps and knowledge on the altitude of the vehicle. 

This paper proposes methods for achieving low cost and 

effective solution to such GNSS denied indoor multi-storey 

parking garage navigation. Many existing devices in the 
market, such as smartphones, are equipped with gyros, and 

all modern land vehicles (e.g., cars) have odometers. Given 

the nonholonomic constraints of vehicle motion and the 

initial location of the vehicle with respect to the target 

indoor, these two sensors and a detailed 3D map are 

sufficient to obtain an indoor 3D positioning solution. 

A 3D model as depicted in Fig. 1(a), representing the 

structural details of a real-world multi-storey parking garage 

shown in Fig. 1(b), is used as a 3D map and motion 

constraint in the solution which is based on particle filtering. 

In the filter, each particle is modelled as a separate 3D 

vehicle object which has approximately the same horizontal 
and vertical dimensions as a true vehicle. 

The rest of the paper is organized as follows. Section 2 

describes the related work while Sections 3 and 4 address 

the particle filtering and collision detection methods upon 

which the proposed navigation algorithm relies. Section 5 

describes the measurement and experimental setup for 

testing and in Section 6 we demonstrate the approach with 

real-world sensor data obtained by driving a car in a parking 

garage. Finally, Section 7 concludes the paper. 

 

2. RELATED WORK 
 

Map-matching has been studied for decades, with the first 

implementations estimating the position of a vehicle along a 

known route [4]; an extensive description of the most 

common map-matching algorithms is given in [5]. 

Many solutions to the 3D indoor positioning problem 

have been proposed in the literature. Wagner et al. [6] used 

cascaded Kalman filters and “road link” matching for 

positioning vehicles in parking garages. Nowadays, a 

popular approach is to use a particle filter (PF); they are 

known to be well suited for positioning problems [7]. 

Fairfield et al. [8], and Kümmerle et al. [9] used the PF for 

simultaneous localization and mapping (SLAM) in a 

parking garage environment. However, the map information 

cannot be used as an efficient motion constraint in SLAM 

because the map is one of the unknowns. Leppäkoski 
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et al. [10] proposed a pedestrian dead reckoning solution for 

indoor pedestrian navigation with detailed indoor maps as a 

motion constraint, inertial sensors as the primary source of 

information, and radio signals as assisting signals. This study 

showed that a very detailed 2D map, including even 

bookshelves, significantly improved the PF navigation 
solution in a 2D space. 

Whereas we use, a detailed 3D map of the parking garage 

as a motion constraint to navigate in 3D space using on-board 

motion sensors. In our PF, we test each particle for collisions 

in a novel way, taking into account the dimensions of the 

vehicle which improves the accuracy of the map-matching. 

Instead of using altimeters or any other means for height 

estimation we use the 3D model ramps eliminating the 

necessity for external radio navigation updates, which are a 

common solution as in [11] when no map information is used. 

 

3. PARTICLE FILTERING 

 

Particle filtering is an approximation of the Bayesian filter 

where the posterior distribution               , with    

denoting the state vector at time step n and        being the 

measurements, is characterized by a cloud of random 

samples, called particles, instead of, e.g., the moments of the 

distribution. The foremost benefit of this representation is the 

ability to operate on arbitrary distributions, thus making it 
possible to estimate, e.g., multimodal distributions which 

often cause divergence of Kalman-type and other filters that 

assume Gaussian distributions. Particle filtering is a Monte 

Carlo method and both its performance and computational 

complexity depend on the number of particles used. We use a 

PF variant called the bootstrap filter [12] where the so-called 

importance distribution is chosen to be the transitional prior 

distribution. 

Suppose we have N particles    with nonnegative weights 

   ,   = 1, …, N. Each particle is a state vector containing the 

quantities that are to be estimated; in this study, the     

particle is a 4×1 vector 
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where   is the heading angle,      and   denote East, 

North, and vertical coordinates, respectively. Particle 

filtering consists of two basic steps, i.e., prediction and 

updating. In the prediction phase, we draw particles from 
the transitional distribution. Assuming that nonholonomic 

constraints hold, the expected value of this distribution can 

be expressed as  
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where  is the expected value operator;   is the inclination 

angle of the surface on which the particle is located;    and 

   are the measured speed and angular rate at the nth time 

step, respectively; and    is the measurement interval. The 

covariance of the transitional distribution is determined 

based on e.g., the error characteristics of the motion sensors. 

In the update step, the weights of the particles are 

modified according to the likelihood of a measurement 

given the state vector. In the case of the bootstrap filter, the 
update is done according to the simple proportion 
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Due to the proportionality relation, the weights need to be 

normalized to sum to unity after updating. This way, it is 
straightforward to estimate the mean of the posterior 

distribution as the weighted average of the particles.  

In this paper, we use the 3D map as a source of 

measurement updates according to the likelihood function  
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In other words, particles that collide are discarded. If other 

measurements are available, they can be incorporated into 

the estimation process by means of additional update steps 
with appropriate likelihood functions. It is obvious that 

discarding colliding particles leads to a situation where only 

a small fraction of the N particles are actually used for the 

state estimation; such a cloud of particles is obviously not a 

good approximation of a probability distribution and also 

causes a waste of computational resources if zero-weighted 

particles are propagated. This problem can be avoided by 

resampling the set of particles; in this procedure, a new set 

of N particles is drawn from the discrete probability 

distribution defined by the old particles and their respective 

weights, such that the newly obtained set of particles 

represent the same distribution as the old one, but with a full 
number of “alive” particles. 

In this study, the map update likelihood is computed by 

modelling each particle as a vehicle with physical 

 
(a)    (b) 

Fig. 1. Multi-storey parking garage: (a) 3D model and (b) 

the real world garage. 
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dimensions and motion constraints, instead of a freely 

moving point mass. This significantly improves the 

accuracy of the map-matching because we can detect if one 

of the corners of the vehicle is touching a wall although the 

centre of mass is not. This modelling is discussed in detail in 

the following section 

 

4. COLLISION DETECTION 
 

Collision detection is defined in this context as the ability to 

computationally detect if two or more objects are 

intersecting with each other. In general indoor parking 

garages consist of objects such as walls, railings, ramps, 

floors, roofs, and pillars that can be classified as target 

objects, and the vehicles which navigate in the garages as 

the source objects. Such object models can be obtained or 

designed easily with CAD software to reflect real-world 

parking garages and vehicles. The structural details of 

dimensions of the models play an important role, the more 
accurate the approximation of the model the better is the 

localization. 

With the advances in computer aided design, 

programming tools, and computational capabilities of 

microprocessors, it has become feasible to represent and 

render such objects as software models on consumer 

devices. These software objects can be moved in a 3D space 

and collisions can be detected. Fig. 1(a) depicts our 

modelled garage space and Fig. 2 illustrates the wall and 

vehicle models. The modelled garage space forms our target 

space and objects in it are the target objects while the 

modelled vehicle object is our source object. When this 
source object is moved around in the target space, its 

movement is restricted to be on the path ways of the floor, 

ramp targets and it should not go through certain target 

objects such as walls. There arises a need to detect when 

source object is hitting such restricted objects to identify 

illegal moves. This is solved by collision detection methods 

[13]. In general, an intersection between a source and a 

target object is calculated using two simple boundaries 

encompassing the objects, namely the bounding box and the 

bounding sphere. These boundaries are as shown in Fig. 2. 

A sphere and a box intersect when any one of the points of 
the sphere falls within the range of points forming the 

bounding box. As can be seen from Fig. 2(b), box and 

sphere frames would not necessarily encompass the source 

object (vehicle model) as an exact fit. Therefore, for precise 

collision detection, in our implementation we have attached 

small spherical objects to the modelled source object, at 
different locations as depicted in Fig. 3(b). We will call 

these extra objects “virtual sensors” as they work similar to 

proximity sensors in real world. The number of such virtual 

sensors to be attached depends on the desired precision of 

required vehicle structure for collision detection and the 

trade-off between computational speeds and power 

consumed in such computations. 

For every movement of the source object in the target 

space, the collision detection algorithm is applied between 

the source and the target objects. If a collision is detected, 

an appropriate action is taken, such as down-weighting the 

particle if it hits a wall or updating the position of the 
vehicle according to (2). 

 

5. EXPERIMENTAL SETUP AND RESULTS 

 

The proposed method was evaluated with field experiments. 

We measured the speed and heading rates of a passenger car 

by driving it in seven storey parking garage. A VTI 

SCC1300 MEMS gyro [14], a CarChip OBD II reader [15], 

and a DGPS system (NovAtel DL-4 Plus) [16] were used to 

measure the heading rate, speed data, and location 

information respectively. We have developed a software 
program that loads the modelled 3D replica of the garage 

and navigates the modelled vehicle within it. A separate 

Matlab script was used to process the sensor data samples 

and to feed them to the developed software. The software 

used this data to compute the successive locations, detect 

collisions, and move the modelled vehicle particles to the 

computed locations. The current location of the particles 

after the successive moves, and information about the target 

objects with which the particle has collided during 

successive moves are returned by the software to the Matlab 

script.  Based on this output information appropriate action 

is taken by the script, e.g., adjusting the weight of a particle, 
or resampling when the count of the particles falls short. 

 
(a)   (b) 

Fig. 3. (a) Detailed structural model of a single floor 

parking garage and (b) vehicle model embeded with 

virtual sensor spheres (front, back, left, right, middle and 

top) used for collision detection. 

 
(a)    (b) 

Fig. 2. (a) Target object with bounding box and (b) source 

object with bounding box and bounding sphere. 
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(We used Matlab script as a faster development platform for 

the initial PF algorithm design and implementation, for real 

time navigation solution this script will be integrated with 

the software program). 

The vehicle particle is propagated using a reference 

point located at the centre of mass of the vehicle. The 

overall structure is then defined by the virtual sensors 

attached around the vehicle. For checking the collision of 

the vehicle with the target objects, each virtual sensor is 
cross-checked for an intersection with the bounding frames 

of the target objects in the target space as depicted in Fig. 3 

(a) and the collision detection information is used according 

to (4). 

For detecting and navigating on ramps we have used a 

straightforward and simple method. The method assumes 

that the slope of the ramp is known beforehand and that a 

vehicle always touches the floors connecting the bottom 

edge and top edges of the ramp. Traversing a ramp always 

takes following sequence: once a vehicle reaches the floor 

connecting the start (end) of a ramp, collision detection is 

applied with that particular ramp and the vehicle; if a 
collision is detected, vehicle is tilted to the angle of the ramp 

and the vertical and horizontal position is altered 

accordingly in 3D space. This process is applied until the 

second floor connecting the end (start) of the ramp is 

reached, after which the tilt to the vehicle is removed and 

the vehicle will navigate in horizontal space. Ramp 

navigation can also be achieved without the knowledge of 

the slope of a ramp by using collision detection logic alone 

or using information from gyro measuring the tilt of the 

vehicle; nonetheless, we follow the approach described 

above. 
Fig. 4 shows the trajectories of 60 particles with white 

lines and the resulting position estimate obtained as the 

mean of the particle distribution with a blue (dark) line. In 

Fig. 4(b) the green objects represent the vehicle structured 

particles. These particles were initialized with randomized 

heading and positions close to the initial position of the 

vehicle in the fourth floor, and they successfully tracked the 

vehicle to the seventh floor, the final vehicle parking place. 

For 95% of the time, the mean of the particles was in the 

correct floor and with a maximum estimated position error 

of  2.5 meters. 5% of the time the algorithm fails to find the 
actual path as particles move in wrong direction for uknown 

reasons during resampling stage; which will be addressed in 

future implementations. The performance could be 

improved by using a more accurate 3D map of the parking 

garage and enhancements to the algorithm; nevertheless, 

these results demonstrate the potential of the method. Fig. 5 

shows the resulting position estimate projected into two 

dimensions; it can be clearly seen that the .path on each 

floor is very much overlaping indicating the similarity of the 

floors and the accuracy of the solution. The shorter curve is 

the path on the last floor where the car was finally parked, 
the expected approximate true position is marked in green. 

For same last floor, track marked in red is the DGPS data 

track, measured during the return trip from top floor.  

 

6. CONCLUSIONS 

 

We have described a simple and efficient method for 

localizing a vehicle in a multi-storey parking garage. The 

method uses only gyro and odometer data, applies collision 

detection and particle filtering in 3D space. Unlike most of 

the existing techniques, external sources, such as radio 
signal beacons, altimeters are not needed. The proposed 

solution assumes that a detailed 3D structural model of the 

parking garage as shown in Fig. 1(a) or Fig. 3(a) is available 

in addition to initial position information when entering the 

garage. These assumptions are realistic and practical. Our 

experiments show that the solution works with reasonable 

accuracy using on-board sensors and the solution can be 

used to provide valuable assistance information to the 

driver, e.g., guidance to vacant parking spot. 

The feasibility of the method was demonstrated in one 

type of parking garage. In the future, we plan to carry out 

more rigorous tests, with actual smartphone sensors, and 
extend the concept to tunnels and multi-level interchanges to 

enable accurate and seamless navigation services for drivers. 

The applicability of the proposed method is not limited to 

vehicular navigation; in fact, it could be used in any indoor 

environment with a navigating object capable of measuring 

its ground speed and angular rate, where navigation involves 

floor to floor navigation via ramps or staircases. 

  

 
(a)   (b) 

Fig. 4. Trajectories of the individual particles (white) and 

the resulting estimate of the path of the vehicle (blue): (a) 

side view and (b) top view. 

 

Fig. 5. Estimated trajectory of the vehicle projected into 

two dimensions. Trajectory of measured DGPS data on top 

floor, marked in red. 
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