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ABSTRACT

In this paper, we propose a Soft-thresholding Orthogonal
Matching Pursuit (ST-OMP) technique for efficient signal
reconstruction in compressive sensing applications. The pro-
posed ST-OMP recovers less significant signal elements using
a low-complexity procedure without sacrificing much recon-
struction quality. We apply the proposed ST-OMP in systems
powered by non-deterministic renewable energy sources. The
threshold of employing the efficient reconstruction is made
dynamically adjustable according to the performance require-
ments and energy levels. Simulation results demonstrate that
the ST-OMP can achieve good recovery performance while
significantly reducing the energy consumption as compared
to the original OMP implementation.

Index Terms— Compressed sensing, Signal reconstruc-
tion, Energy efficiency, Soft-thresholding, Renewable Ener-
gy.

1. INTRODUCTION

Many embedded systems have to be operated under scarce
physical resources. One effective way to achieve satisfacto-
ry performance is to reduce unnecessary/redundant data to be
processed. Conventional sensing techniques acquire far more
data than required, i.e., a large amount of data are irrelevant
and thus can be thrown away without affecting the perfor-
mance. For this consideration, Compressive Sensing (CS) [1]
has gained significant interest recently due to its capability
to process sparse signals, thereby reducing physical resources
needed for data acquisition and transmission. Existing work
include applying CS in wireless communications [2], data
compression [3], imaging [4] and other related areas.

While showing great potential for embedded computing,
CS-based techniques still face a critical problem of recovering
original signals from relatively few measurements in a reli-
able and efficient way. Much research effort has been directed
towards investigating reconstruction algorithms [5], [6] for
this purpose. Two major approaches are the `1-minimization
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and greedy algorithms. Orthogonal Matching Pursuit (OM-
P) [7] as a greedy algorithm is getting popular for its relatively
low complexity. However, most existing work focus main-
ly on algorithm optimization without considering domain-
specific constraints. For example, one emerging area to apply
CS is to exploit renewable energy sources in autonomous and
distributed wireless sensor networks. Most renewable energy
sources are non-deterministic due to the inherent uncertain-
ties in environmental conditions. Therefore, it is critical to
improve the energy efficiency of signal reconstruction.

In the iterative OMP algorithm, last rounds of iteration
introduce large computational complexity as more compli-
cated matrix operations are involved. However, these itera-
tions usually recover less significant elements of original sig-
nal. On the other hand, many sensing applications do not
require precise signal acquisition but are quite error-tolerant
as long as sensing tasks can be fulfilled. Thus, there exist
some interesting tradeoffs between computational complex-
ity, performance, and cost in signal reconstruction. These
tradeoffs can be exploited for applications that are operated
under severe resource constraints (e.g., time, energy). In this
paper, we propose a Soft-thresholding OMP technique (ST-
OMP) that leverages these tradeoffs for efficient signal recon-
struction under renewable energy. Since the last iterations are
costly while only recovering less significant elements, we can
replace these iterations with a low-complexity procedure to
reduce recovery cost without sacrificing much quality. The
threshold at which the algorithm switches is adjusted dynami-
cally in accordance with performance requirements and avail-
able energy levels, which may be changing at runtime. The
proposed ST-OMP allows efficient recovery of less significant
but computation-intensive signal components while maintain-
ing high reconstruction quality. This is a feature of great sig-
nificance for realtime self-powered embedded systems.

2. PRELIMINARIES

Compressive sensing can be expressed mathematically by
multiplying the original signal X ∈ RN with a measuring
matrix Φ ∈ RM×N to obtain the measurement Y ∈ RM , i.e.,

Y = Φ ∗X, (1)
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whereX is assumed to haveK non-zero components and ma-
trix Φ is usually a random Gaussian or Bernoulli induced ma-
trix [1]. Usually, K < M � N for CS to make sense; that
is, fewer measurements are taken while still guaranteeing re-
liable recovery of all K non-zero components in vector X .

One classical approach of signal recovery is Basis-Pursuit
(BP) [5] that applies convex optimization in an over-complete
dictionary. However, BP approach typically involves large
computational complexity. Another approach is based on
greedy algorithms, among which OMP-based reconstruction
is getting popular because of its simple geometric interpo-
lation and relatively low computational complexity. The
procedure of OMP algorithm can be summarized as follows,

1. Initialize: k = 1; I0 = ∅; R0 = Y ; α0 = ΦTY ;
2. i = argmaxi(|αi|) and Ik = Ik−1 ∪ i
3. X̂k = argminz(‖ Y − ΦIkZ ‖)
4. Rk = Y − ΦIkX̂k and αk = ΦTRk

5. Increment k and return to step 2 if k < K
In the above algorithm, Ik ∈ Rk and its complementary

set Ĩk ∈ RN−k stand for index set of selected and remaining
columns in matrix Φ. At each iteration, the column most cor-
related with current residual Rk is chosen from matrix ΦĨk
and its coordinate is added into Ik. Then, the algorithm mini-
mizes residual error in step 3 by solving the equation [8] as

X̂k = Φ†IkY, s.t. Φ†Ik = (ΦT
Ik

ΦIk)−1ΦT
Ik
, (2)

where X̂k, Rk ∈ RM , and αk ∈ RN−k are current estimate
of signalX , residual vector, and inner product of ΦT

Ĩk
andRk,

respectively. After K iterations, K elements are estimated
with index set showing coordinates of these elements in X .

3. THE PROPOSED SOFT-THRESHOLDING OMP

3.1. Motivation

The computational complexity of OMP algorithm increases
significantly as iteration order goes up [9]. The reason is that
updating Rk and αk needs more operations as Ik increases in
size. Our past work [10] also observed this trend.

Interestingly, the last rounds of iteration usually recov-
er less significant elements of the signal. This can be seen
from the fact that the index vector Ik always selects the el-
ement with the largest absolute value from the current vec-
tor αk (see step 2 of the OMP algorithm), which is the inner
product of matrix ΦT and residual vector Rk. Initially, the
residual vector Rk is the measurement vector Y = ΦX , thus
ΦTRk = ΦT ΦX , where the measurement Φ is a random ma-
trix following the Restricted Isometry Property [5], and the
vectors in matrix Φ behave like an orthogonal basis. The ma-
trix ΦT Φ is a symmetric matrix, whose diagonal elements are
the dot product of same vectors, whereas the other elements
are the dot product of two incoherent vectors. Thus the ele-
ments in the diagonal of ΦT Φ usually have the largest values,
and αk = ΦT ΦX is likely to preserve the weight pattern of

the elements in the original signal X . Consequently, the first
iteration of the OMP algorithm will recover the element with
the largest weight in the original signal X .

In the subsequent iterations, vectorRk = ΦY−ΦIkΦ†IkΦX
is updated according to index vector Ik. Consider vector

ΦTRk = ΦT ΦX − ΦT ΦIk(ΦT
Ik

ΦIk)−1ΦT
Ik

ΦX. (3)

It is known that ΦT
Ik
∈ ΦT and ΦT

Ik
Rk = ΦT

Ik
ΦX −

ΦT
Ik

ΦX = 0. As a result, selected elements in X will not be
picked up again. On the other hand, Φ = ΦĨk

⋃
ΦIk and thus

ΦT
Ĩ
Rk = ΦT

Ĩk
ΦX − ΦT

Ĩk
ΦIk [(ΦT

Ik
ΦIk)−1ΦT

Ik
ΦĨk

⋃
I]X.

As ΦT
ĩ

is incoherent with all the vectors in matrix ΦIk ,
ΦT

Ĩk
ΦIk is a random matrix with much smaller diagonal ele-

ments than matrix ΦT Φ. Therefore, ΦT
Ĩ
Rk is mainly deter-

mined by ΦT
Ĩk

ΦX and remaining non-zero elements in signal
X are likely to be recovered in the order of their weights.

To illustrate this observation, we run an experiment to re-
cover a sparse signal with non-zero elements of values ran-
domly chosen from 1 to 100. Results in Fig. 1 show how the
signal is recovered with respect to iteration order. We can
clearly see that elements with larger values are likely to be
recovered earlier. For example, elements with a value of 90
are recovered before 20th iteration, whereas elements with a
value of 10 are most possibly recovered after 40th iteration.
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Fig. 1. Statistical results of signal recovery pattern.

3.2. Soft-thresholding OMP

Based on the above observation, we propose Soft-thresholding
OMP (ST-OMP) for efficient signal recovery. Note that the
proposed ST-OMP is a general approach that can be utilized
to address various resource constraints. In this paper, we will
focus on improving energy efficiency due to that energy is a
major resource constraint in many embedded systems.

We consider a scenario where the signal reconstruction
needs to be finished with limited energy supply. A chal-
lenging problem is that available energy may be dynamically
changing if the computation is powered by renewable energy
sources, in particular when available energy is insufficient to
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support signal reconstruction using OMP. The proposed ST-
OMP is very effective to deal with this challenging problem.

At the beginning of each signal reconstruction task, the
ST-OMP recovers one non-zero element in the signal X at
each iteration using the same procedure in the OMP algorith-
m. Assume the signal to be recovered is K-sparse and its
(K − L) non-zero elements can be recovered given a certain
renewable energy level. After that, the energy becomes in-
sufficient to support the remaining iterations. Note that the
energy consumption of each iteration increases with the order
of iterations because the last iterations involve more compu-
tations as discussed in Section 3.1. The proposed ST-OMP
switches to a low-complexity recovery algorithm, where it-
eration threshold L for making this switch is determined by
the available energy, i.e., it is adjustable in accordance with
renewable energy while trying to achieve the highest recon-
struction quality as possible. This is expressed formally as

L = argminl(EOMP (K − l) +4E(l) ≤ Eavl), (4)
whereEOMP (K−l) is the amount of energy consumed in the
first (K − l) rounds of iteration,4E(l) is the expected ener-
gy consumption of the low-complexity algorithm (see below),
and Eavl is the available energy at the beginning of each sig-
nal reconstruction task. Note that Eavl is a time-dependent
variable as in the case of renewable energy sources.

Once L determined in (4) is reached, we store the value of
latest recovered element and α from the (K − L)th iteration,{

X̂temp = X̂(K − L),
αtemp = αK−L.

(5)

Signal reconstruction is then switched to a low-complexity
algorithm. Instead of choosing only the largest element at
each iteration like OMP algorithm, we choose the L largest
elements (absolute values) in vector αtemp and add the corre-
sponding coordinates into the index set I(K−L), i.e.,

1. Initialize: count = 1; α = αtemp

2. i = argmaxj *I (|αj |)
3. IK−L+count = IK−L+count−1 ∪ i
4. Increment count and return to step 2) if count ≤ L
By doing so, signal reconstruction avoids energy-consuming

multiplication operations between matrix ΦT ∈ RN×M and
vector Rk ∈ RM to update αk. Furthermore, there is no need
to keep updating Rk, which involves matrix inversions. After
the coordinates of the remaining L non-zero elements are
determined, the corresponding entries in the estimated signal
are assigned with the value of the latest recovered X̂temp, i.e.,

X̂(IK−L+i) = X̂temp, for i = 1 : L. (6)
Note that the above low-complexity algorithm will intro-

duce recovery errors (relative to OMP). This is because the
recovered elements might not necessarily result in the mini-
mal residual errors in signal reconstruction (see step 3 of the
OMP algorithm in Section 2). However, as mentioned in Sec-
tion 3.1, since the most significant elements of the signal have
already been recovered in the previous (K − L) rounds of it-

eration, the remaining signal elements recovered by the low-
complexity algorithm are likely to be less significant, and thus
the performance degradation is minimal. As more errors are
introduced when the threshold L becomes larger (e.g., due
to insufficient energy), a upper limit L ≤ LMAX can be en-
forced for signal reconstruction. This sets up a lower bound
on the recovery quality, which can be determined by the spe-
cific performance requirement of an application. In practice,
signal reconstruction will fail if L obtained from (4) is larger
than LMAX due to insufficient renewable energy.

To apply the proposed ST-OMP, we need to know the
available energy Eavl at the beginning of each signal recon-
struction task, and energy consumption EOMP (K − l) and
4E(l) related to the signal reconstruction. Existing work [11,
12] have shown thatEavl can be estimated by some prediction
algorithms with sufficient accuracy. These algorithms operate
at a much lower rate (e.g., once per hour) and thus the ener-
gy overhead can be ignored. On the other hand, EOMP (K −
l) and 4E(l) will depend upon a specific hardware imple-
mentation. It is usually very difficult (and in most cases un-
necessary) to determine the analytical relationship between
these energy components and the process of signal recovery.
Rather, they can be estimated through simulations or pre-
operation hardware measures, and the results can be stored
in a look-up table (LUT) for runtime comparison with Eavl.

4. EVALUATION

We have synthesized the proposed ST-OMP using Synopsys
Design Compiler for a 65nm CMOS process at a clock fre-
quency of 500MHz. The original OMP was also implemented
for the purpose of comparison. The computations in these im-
plementations were verified by MATLAB simulation results.

We first evaluate the effect of soft thresholding on per-
formance and computational complexity of signal reconstruc-
tion. Sparse signals with different numbers of non-zero ele-
ments (60, 80, 100 and 120) were recovered using the pro-
posed ST-OMP by deliberately changing threshold L from 5
to 55. The experiments were repeated 105 times to obtain
statistical results of recovery accuracy (i.e., identifying the
non-zero elements) and computational complexity (in terms
of the number of arithmetic operations needed to complete
the recovery). As shown in Fig. 2, reconstruction accuracy
shows almost no degradation when L is small. As L increas-
es, less than 10% of performance degradation is observed,
which is acceptable for most CS applications (see the case
study below). On the other hand, ST-OMP achieves signifi-
cant reduction in computational complexity (more than 60%),
in particular when sparsity of signal is high because the low
complexity procedure recovers more elements in such signals.

To visualize performance degradation of ST-OMP, a gray
image of size 500 × 1000 pixels was recovered under dif-
ferent values of L. As shown in Fig. 3, the percentage in-
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Fig. 2. Recovery accuracy and computational complexity for
signals with different sparsities and threshold L.

Table 1. Hardware measurements of the proposed ST-OMP.
Algorithm Recovery time Energy consumption

ST-OMP-90% 0.16 ms 0.0205 mJ
ST-OMP-70% 1.50 ms 0.1944 mJ
ST-OMP-50% 4.48 ms 0.5822 mJ
ST-OMP-30% 9.52 ms 1.2382 mJ
ST-OMP-10% 16.95 ms 2.2031 mJ

OMP 21.57 ms 2.8046 mJ

dicates how many non-zero elements were recovered using
low-complexity procedure in the second phase of ST-OMP.
Even at a level of 90%, the quality of recovered image is
still acceptable, i.e., the object can be sufficiently identified.
Table 1 shows the results of reconstruction time and energy
consumption obtained from the synthesized hardware imple-
mentation at clock frequency of 500MHz. These results fur-
ther validate that ST-OMP can significantly reduce computa-
tional complexity and energy consumption while maintaining
high reconstruction quality. This is very important for real-
time energy-constrained embedded system.

(a) ST-OMP-90% (b) ST-OMP-70% (c) ST-OMP-50%

(d) ST-OMP-30% (e) ST-OMP-10% (f) OMP

Fig. 3. Image reconstruction via the proposed ST-OMP.

Finally, we evaluate the proposed technique in a self-
sustained video monitoring system. We consider the system
to be powered by solar energy and process compressively-

sensed video (24 images/second with image size of 500 ×
1000 pixels) in realtime. We adopt the commonly used solar
energy model [13] to describe daily solar energy.

Since solar energy pattern is repetitive yet non-deterministic,
the reconstruction algorithm needs to be adjusted dynamical-
ly to achieve the highest possible reconstruction quality under
different energy condition. Fig. 4 shows the available solar
power (as in the dashed columns, which also reflect the run-
time adjustment of ST-OMP based on the available power)
and the corresponding performance measured by Signal-to-
Error Ratio (SER), where errors are defined as the difference
between the recovered and original images. If energy is
low, ST-OMP with a larger threshold L is selected to re-
duce the computational complexity, thereby reducing energy
consumption in signal reconstruction. As expected, this
will introduce some performance degradation. If we set the
maximum allowable SER degradation to be 6dB, the corre-
sponding LMAX can be determined. The proposed ST-OMP
only fails 8.3% of the time (i.e., threshold L > LMAX in 2
out of 24 time slots). In comparison, original OMP will fail
87.5% of the time due to its large energy consumption under
insufficient solar energy supply. Therefore, through soft-
thresholding the proposed technique is able to achieve better
tradeoffs between recovery quality and energy consumption.
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Fig. 4. Performance of the ST-OMP in a self-powered sensing
system (solar cell panel area: 1.5cm2).

5. CONCLUSIONS

The original iterative OMP algorithm involves large compu-
tational complexity in the last rounds of iteration while only
less significant signal elements are recovered. Based on this
observation, ST-OMP technique was proposed to improve the
tradeoffs among computational complexity, performance, and
cost in signal reconstruction. Recovering less significant el-
ements with low-complexity computations can significantly
reduce energy consumption without affecting recovery quali-
ty. This is a much-needed feature in many self-powered em-
bedded systems. Further work is being directed toward devel-
oping a dedicated ASIC for the proposed ST-OMP.
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