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ABSTRACT

We present the VMM+WTA structure as a general-purpose,

low-power, compact, programmable classifier architecture

and demonstrate its equivalence to a 2-layer perceptron. The

classifier generates event outputs and is suitable for integra-

tion with event-driven systems. We present measured data

from simple linear and non-linear classifier structures on a

0.35µm chip and demonstrate the implementation of an XOR

function using a 1-layer VMM+WTA classifier.

Index Terms— classifiers, analog signal processing, pro-

grammable analog computing

1. EFFICIENT ANALOG SIGNAL PROCESSING

In embedded systems that receive sensory inputs, process and

classify them to take decisions, it is essential to take a low-

power approach for enabling such structures in robots and

other mobile platforms. Classifiers are typically used in the

information refinement stage and it is often essential that be-

sides being low power, they also produce very few events.

Events are generated when a certain class has been detected,

triggering further circuitry dependent on this decision. In

highly integrated systems, an increased number of events of-

ten leads to increased power consumption, which is required

to transmit events over interconnects between blocks that have

significant capacitances. We propose using a Winner-Take-

All (WTA), which is observed in biological networks for re-

ducing neuron firing rates, in our classifier. This reduces the

rate of output events, resulting in an architecture with reduced

power consumption.

In the past, significant effort in building hardware classi-

fiers has been using Artificial Neural Networks (ANN). In the

simplest ANN, we have inputs being multiplied by a weight

vector, added together at the soma compartment, where a lin-

ear or nonlinear function is applied before we receive the out-

put. ANN approaches include having continuous valued (e.g.

tanh) functions that approximate the spike frequency versus

current input (f-I) characteristic of neurons with an analog

voltage, or spiking (integrate-and-fire neurons, rate-encoded

neurons), feedforward or feedback stages.

In this paper, we consider an analog classifier consist-

ing of a Vector-Matrix Multiply (VMM) terminated with a

WTA, shown in Fig. 1, that is versatile and has more com-
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Fig. 1: Application in Analog Speech Recognizer Chain:

The speech input undergoes frequency decomposition or en-

hancement resulting in sub-band signals. These signals un-

dergo first-level information refinement in the feature detec-

tion stage, resulting in a sparse “symbols” or “event” rep-

resentation. The following stage detects sequences of sym-

bols/events to identify words or syllables, implementing a

first-layer classifier. The feature detect stage maybe imple-

mented as a VMM+WTA classifier, which takes voltage in-

puts. The VMM has current outputs and the WTA has voltage

outputs.

puting power than a 1-layer NN. The VMM block performs a

multiply operation between a vector and a matrix of weights,

resulting in a vector and forms a core component of many

signal processing algorithms. The VMM+WTA, which we

use as the base classifier, compares favorably against the 1-

layer NN in terms of the number of components as well. We

show a direct translation of a 1-layer NN to a VMM+WTA,

where the WTA acts as a current comparator. In a different

formulation, the WTA can perform an analog max function,

selecting the largest (or smallest) of its inputs. With minor

modifications, the WTA can be designed to allow multiple

winners, local winners or to exhibit hysteresis [1–3], lead-

ing to classifiers that allow multiple winners with spatial re-

sponses which can be useful in image processing, or exhibit

hysteresis which makes the classifier immune to noisy inputs.

We see the VMM+WTA classifier being used in an analog

speech recognizer as shown in Fig. 1. The speech input un-
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Fig. 2: k-winner-take-all:(a) The traditional WTA can be

modified to a k-WTA with a current threshold at each output,

realized using a cascoded pFET. The current flowing through

the winning branch is constrained, allowing other inputs to the

WTA to win. The voltage outputs from the WTA are inverted

and a node wins when its output is below mid-rail. Choice of

current threshold determines the number of winners

dergoes frequency-decomposition or signal-enhancement in

the front-end, resulting in input features such as sub-band en-

ergies. These signal inputs are transformed into symbols or

events with ANN, GMM or VMM+WTA in the first stage

of information refinement. This can be followed by higher

level refinement or by a sequencing block to detect syllables

or words. A high-level system overview of the VMM+WTA

circuit is shown in Fig. 1. The inputs to the classifier are

voltages, while the outputs from the VMM are uni-directional

currents. The WTA may produce voltage or current outputs.

2. HARDWARE SYSTEM IMPLEMENTATION

The hardware platform used for implementing the classifier

is among the family of Field Programmable Analog Array

(FPAA) chips, specifically geared towards building large

VMMs. A detailed description of this chip and its features

can be found in [4]. The WTA module is used for modeling

competition in neural networks, specifically in representing

the mechanism of attention [5]. The classic circuit implemen-

tation by Lazzaro et al [1] was based on continuous-valued

elements, that utilized transistor device physics to build an

efficient circuit. Several modifications to this circuit exist,

that allow local winners, hysteresis behavior that stabilize

the outputs, temporary winners that fatigue after a period

of winning and allow other inputs to win and multiple win-

ners [2, 6, 7], all of which may be implemented on the FPAA

using the components available. Often, we require classifiers

that generate not just one output, but multiple outputs. In

pattern classification, we can expect the classifier to indicate

Fig. 3: 1x2 VMM characterization:(a) Schematic of a 1x2
VMM with current inputs. The OTA with base floating-

gate is a logarithmic trans-impedance amplifier and generates

a source voltage that is applied to other devices with pro-

grammed weights.

that a certain pattern matches two categories instead of just

one. The classic WTA circuit does not preclude multiple

winners and this can be achieved by modifying the circuit as

shown in Fig. 2. In this paper, we utilize the classic WTA and

the multiple-winner-WTA circuit for constructing the classi-

fiers. The k-WTA produces inverted voltage outputs that are

taken at the drain of the thresholding pFET. Compared to the

k-WTA circuit in [6], this implementation does not require

any additional power/circuitry. VMMs can be implemented

in a power-efficient and compact manner using floating gates.

The multiplication weights are stored as charge on the float-

ing node and can be precisely programmed and controlled.

The weight can be expressed as

w = eκQ/CTUT (1)

where Q is the charge programmed on the floating-gate node

and CT is the total effective capacitance seen at the float-

ing node. A single floating gate stores the weight as well

as performs a multiply function. Examples of the different

VMM topologies that we can implement are discussed in [8].

The schematic of a 1x2 VMM which achieves single-quadrant

multiplication is shown in Fig. 3. To achieve four-quadrant

multiplication, we require a VMM that takes differential in-

puts and implements signed weights. These structures are dis-

cussed in [8].

3. CAPABILITY OF VMM+WTA CLASSIFIERS

We now integrate the VMM and WTA circuits to build simple

classifier structures. In this section, we describe measured

results from system compilations of linear, multi-class and

non-linear classification problems.

3.1. Linear Classifiers

We start by considering a perceptron, which is a simple linear

classifier with a binary output that can be implemented with

a 1-layer neural network. A linearly separable set of inputs

can be classified using a perceptron trained to weights wi and
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Fig. 4: Linear Classifiers: A simple perceptron or a one-layer feed-forward network can be implemented using a VMM+WTA

structure. (a) The input multiplication can be implemented using VMMs. The bias b is the second input to the WTA, im-

plemented as a fixed current source. Measured results:(b) A VMM+WTA classifier trained to have a decision boundary of

y + x ≥ b, for different bias values b. The black solid line represents the theoretical decision boundary.

bias b having the equation

y =

{

1 if
∑

i wixi − b ≥ 0
0 otherwise

(2)

A VMM+WTA classifier can be trained as a generalized

single-layer perceptron by using a fixed current source as an

additional bias input to the WTA, shown in Fig. 4a. The WTA

functions as a current comparator and the detects the larger of

the inputs. When
∑

i wixi > b, the first input wins. By using

a 1-WTA circuit implemented with the current threshold at

the WTA output, we obtain inverted voltage outputs. Hence,

the first output is low when
∑

i wixi > b and high otherwise.

We measured results from two different linear classifier

boundaries programmed on the VMM+WTA circuit, for mul-

tiple bias values. For a linear decision boundary, we train a

perceptron using MATLAB’s Neural Network Toolbox and

apply the weight and bias values directly to the VMM+WTA

classifier. We restricted ourselves to a 2-input case for ease

of visualization. The structure in Fig. 4a only supports posi-

tive values for the bias. Since our implementation required

signed weights and bias values, we chose a topology with

fully-differential inputs. The classifier was tested over all in-

puts from the set {(x, y) : |x| ≤ 0.8, |y| ≤ 0.8}. We plot the

inverted WTA voltage output in Figs. 4b. The output makes

a sharp transition at the desired decision boundary, which is

marked by the solid line in the plots. We were able to directly

apply the weights obtained from the training algorithm and

target them to the hardware.

3.2. Multi-class Classifiers

As the name suggests, multi-class classifiers have several

outputs, and classify data into multiple classes. The com-

petitive behavior modeled in the VMM+WTA circuit allows

building of such classifiers with multiple outputs that can

detect regions of interest. We demonstrate the capability of

the VMM+WTA circuit to build a region detector. We train a

2-input, 3-output classifier to detect regions of inputs defined

as shown in Fig. 5. Again, for simplicity of visualization,

we chose only 2 differential inputs. We constructed a clas-

sifier with 3 outputs and the region boundaries specified in

Fig. 5(a). From this theoretical construction, we obtained the

weights for the VMM using the pseudo-inverse method. We

generate random inputs in MATLAB and multiply them by

the weight matrix obtained. We then do a max function on

the transformed inputs to generate the theoretical classifier

output in Fig. 5. Since the theoretical weights were signed,

we constructed a fully-differential implementation and tar-

geted the weights to the VMM circuit. We then applied 1000
inputs randomly from the set {(x, y) : |x| ≤ 0.8, |y| ≤ 0.8}.

Since the WTA voltage outputs are inverted, we found the

winning output by finding WTA voltages below inverter

threshold(mid-rail) and recording its position. In Fig. 5(b),

we denote the winning position for each of the random inputs

by a different colored dot. Our 3-output classifier was pro-

grammed with weights obtained directly from MATLAB. It

matches the desired classifier response quite well.

3.3. Non-linear classifiers

Non-linear classification boundaries required in most real-

world problems are usually very computationally intensive.

Single-layer neural networks can only implement classifiers

for linearly separable data, but a 2-layer NN can approxi-

mate any function. A 2-layer NN has an input layer, hidden

layer and an output layer. An analog VLSI implementation

would require 2 VMMs for the synaptic computation and 2
layers of threshold blocks for the hidden and the output lay-

ers. This considerably increases the complexity and power

consumption of the circuitry. In [9], Maass showed that any

boolean function with analog or digital inputs and one binary

output can be approximated with a VMM + k-winner-take-all

classifier. He showed that the weights for the VMM+WTA

classifier are a linear combination of weights of the 2-layer
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Fig. 5: Multi-dimensional classifiers: (a) A two-input three-

output VMM+WTA classifier constructed to have the theo-

retical decision boundaries shown. Each color represents a

different winner. (b) Measured results from the VMM+WTA

classifier compiled.

perceptron, and further, they are all positive, requiring only

single-ended inputs in our implementation. This result pro-

vides additional support to the computational power of the

VMM+WTA classifier, by halving the computing resources

required.

One of the most computationally challenging problems

for neural networks is the XOR problem, which does not

involve a linear decision boundary. We use the algorithm

provided in [9] to compute weights for our VMM+k-winner-

take-all structure to implement a non-linear classification

boundary for an XOR circuit. One possible implementa-

tion of the XOR gate with a 2-layer neural network and

its equivalent VMM+WTA implementation is shown in

Fig. 6. The VMM+WTA XOR circuit requires only a

single-winner WTA. The position of the WTA output com-

puting the XOR function is marked y in Fig. 6. We

tested the XOR circuit by generating inputs from the set

{(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} and recording the voltage at

the third output. The results are plotted in Fig. 6. The VMM

weights are biased at 10nA, resulting in 95nA drawn in the

VMM when both inputs are active. The WTA is biased at

100nA, resulting in 0.47µW drawn at 2.4V, when all inputs
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Fig. 6: Nonlinear Classifiers: The VMM+WTA structure

is powerful enough to implement any boolean function with

one digital output. A solution for the XOR problem using a

two-layer neural network can be translated to a VMM+WTA

implementation. Measured results from an XOR implemen-

tation using the VMM+WTA structure.

are active.

4. CONCLUSIONS

We have presented results from a powerful re-programmable

classifier that can implement linear as well as nonlinear de-

cision boundaries. The classifier architecture combines two

power efficient circuits to provide an ASP alternative to tra-

ditional approaches. The system is extremely compact, al-

lowing scaling to large number of inputs. One of the disad-

vantages of ASP is fixed functionality. The reconfigurability

of the chip allows programmable weights which enables off-

line training, modifying the size and changing the topology

of the WTA to generate different behavior. As an extension to

this work, we can implement local WTAs and hysteretic WTA

for certain applications. We have seen that the VMM+WTA

classifier is roughly equal to a 1-layer NN in circuit complex-

ity, but has computing power equivalent to a 2-layer NN. We

demonstrate this by implementing classic small-scale nonlin-

ear classification problems.
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