
EFFICIENT VLSI IMPLEMENTATION OF REDUCED-STATE SEQUENCE ESTIMATION
FOR WIRELESS COMMUNICATIONS

Stefan Zwicky? Christian Benkeser? Andreas Burg† Qiuting Huang?

? Integrated Systems Laboratory, ETH Zurich, 8092 Zurich, Switzerland
e-mail: {zwicky,benkeser,huang}@iis.ee.ethz.ch

† Telecommunications Circuits Laboratory, EPFL Lausanne, 1015 Lausanne, Switzerland
e-mail: andreas.burg@epfl.ch

ABSTRACT

Modern wireless communication systems require efficient channel
equalizer implementations. This paper explores the design space of
reduced-state sequence estimation (RSSE). We show how the con-
cept of pre-computation can be applied to greatly reduce computa-
tional complexity, such that efficient RSSE architectures can be de-
rived. As a proof of concept, an RSSE was implemented in dedicated
hardware, that achieves a 1.6 times higher hardware efficiency when
compared to prior art.

Index Terms— Channel equalization, RSSE, Design space ex-
ploration, Evolved EDGE, VLSI implementation

1. INTRODUCTION

Inter-symbol interference (ISI) is a challenging problem in many
wireless communication systems. The strong impact of ISI due to
multipath propagation or narrow bandwidth (e.g., 2G-GSM band-
width is narrower than corresponding symbol rate) can cause se-
vere signal distortion, which requires sophisticated equalization ap-
proaches. Maximum likelihood sequence estimation (MLSE), based
on the Viterbi algorithm, is the optimum solution for channel equal-
ization and signal detection. Unfortunately, the computational com-
plexity of MLSE grows exponentially with the number of bits per
symbol and with the delay spread of the multipath channel. The
combination of a high modulation order and long channels renders
MLSE infeasible in modern wireless systems.

A sub-optimal Viterbi equalizer that can achieve close-to-MLSE
performance1 at significantly lower complexity is reduced-state se-
quence estimation (RSSE) [2, 3]. Contrary to MLSE where refer-
ence signals that correspond to all possible combinations of modu-
lated symbol sequences with channel lengthL are compared with the
received signal, RSSE drastically reduces the number of candidate
symbol sequences by applying symbol partitioning and decision-
feedback with early decisions (cf. Sec. 2). Since the generation of
the reference signals is the most complex part of MLSE, the reduc-
tion of candidate symbol sequences with RSSE directly translates
to a reduction of corresponding implementation complexity. Unfor-
tunately, even RSSE complexity is still huge when supporting high
modulation orders. Hence, dedicated hardware is required to achieve
high throughput or to achieve hardware and energy efficient solu-
tions, as desired for mobile devices.

1We assume that the channel has been shortened with a channel-
shortening pre-filter (e.g., [1]).

So far, VLSI implementations for RSSE have only been pub-
lished for the specific application of Ethernet with trellis-coded mod-
ulation [4–6], where only costly fully-parallel architectures for very
high throughput have been considered. A VLSI implementation of
a delayed-decision feedback sequence estimator (DDFSE), a spe-
cial case of RSSE, for 2.5G EDGE and for 2.75G Evolved EDGE
(E-EDGE) [7] has been published in [8] and [9], respectively. How-
ever, in literature there is a lack of RSSE design space exploration
for systems with moderate throughput requirements using higher or-
der modulation. Especially, the impact of algorithm and architec-
tural choices on implementation complexity can be crucial in sys-
tems that rely on efficient VLSI implementations, such as modern
wireless mobile receivers.

In this paper, we explore the design space for non-fully paral-
lel Viterbi equalizers. We apply the pre-computation approach pre-
sented in [9] for DDFSE to the more general RSSE. The presented
design space exploration allows for efficient VLSI architectures tai-
lored to given design constraints. As a proof of concept, an efficient
VLSI implementation of RSSE for E-EDGE is presented and mea-
surement results of the design are compared to prior art.

2. SYSTEM MODEL AND ALGORITHM

Throughout this paper, the following baseband transmission model
is considered:

rk =

L−1∑
m=0

sk−mhm + nk . (1)

A block of modulated symbols sk is impaired by a multipath chan-
nel with impulse response hk of length L. The symbols are further
disturbed by complex additive white Gaussian noise nk, resulting
in complex-valued samples at symbol rate, denoted as rk. It is as-
sumed that an estimate ĥk of the channel impulse response (CIR) is
available at the receiver.

With MLSE, based on the rk, the most probable transmitted se-
quence is efficiently found with the Viterbi algorithm in the logarith-
mic domain by searching the best path through a trellis. The states
of this trellis correspond to all possible combinations of the L − 1
modulated symbols in the channel memory, defined as the vector s̄t.

Whenever different paths merge into a state s̄t, the best path
is selected based on a path metric which is the sum of the branch
metric of the incoming branch Γ(̄st−1, s̄t) and the state metric of
the predecessor state A(̄st−1). The branch metric is defined as

Γ(̄st−1, s̄t) = (

L−1∑
k=0

s̄t−kĥk − rt)
2 , (2)

2528978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

with the symbols s̄t−(L−1) . . . s̄t−1 defined by state s̄t−1, and sym-
bol s̄t defined by the branch between states s̄t−1 and s̄t. The new
state metric is given as the minimal metric of all paths merging into
the state s̄t

A(̄st) = min
s̄t−1∈χ(s̄t)

[A(̄st−1) + Γ(̄st−1, s̄t)] , (3)

where χ(̄st) is the set of all predecessor states of s̄t. The branch
associated with the smallest metric is denoted as the winning branch
and once the end of the trellis is reached, the symbols corresponding
to the ML solution are found by tracing back through the trellis along
the winning branches. The number of trellis states is given by

NMLSE = 2Q(L−1) = ML−1 , (4)

where Q is the number of bits per symbol and M = 2Q is the size
of the symbol alphabet (or modulation order). The computational
complexity of MLSE is proportional to the number of trellis states,
which grows exponentially in Q and L. Therefore, it becomes pro-
hibitively large for a typical channel length ofL = 8 and modulation
order M > 2, as used e.g., in E-EDGE.

2.1. Reduced-State Sequence Estimation

Compared to MLSE, the RSSE algorithm reduces the number of trel-
lis states by dividing the symbol alphabet into subsets and defining
the trellis on these subsets. The division of the M symbols into J
subsets is optimally chosen such that the Euclidean distance of sym-
bols within the same subset is maximal (e.g., through Ungerboeck
partitioning [10]). Whenever a surviving path is selected, a decision
within the subset is done immediately, but the selection among sub-
sets is postponed. Each state keeps a list of surviving symbols such
that the branch metric of (2) can be calculated. The trellis state is
no longer defined by the past L− 1 symbols but by the subsets cor-
responding to these symbols. Thus, the number of trellis states is
reduced to

NRSSE =

L−1∏
k=1

Jk , (5)

where Jk is the number of subsets considered for the symbol k time
steps in the past. To have a well-defined trellis, the numbers of sub-
sets Jk must be non-increasing (i.e., J1 ≥ J2 ≥ J3 etc.) and a
decrease in Jk must be achieved by merging subsets. Restricting Jk
to powers of two makes the algorithm more suitable for implementa-
tion. Choosing J1 < M leads to P = M

J1
parallel branches leading

from one state to the next as depicted in the example in Fig. 1 for
M = 4, J1 = 2 and J2 = 2.

DDFSE corresponds to the special case where Jk = M for
k ≤ D and Jk = 1 for k > D. Choosing D = 0 results in a de-
cision feedback equalizer and D = L − 1 in the MLSE. Especially
in communication systems with large M , DDFSE implementations
are usually only feasible with D = 1, because the complexity with
D = 2 is already huge. With RSSE instead, the Jk can be cho-
sen more freely, to allow for a much more fine-grained adjustment
of the performance-complexity trade-off. In the following section
we will describe the design space and efficient RSSE realizations,
given a certain configuration of the Jk, in order to find most suitable
hardware architectures for specific design constraints.

3. DESIGN SPACE EXPLORATION

In contrast to Viterbi decoding, the branch metric computation (2) is
the most computationally intensive part of a Viterbi equalizer [11].

Fig. 1. Example of four-state RSSE trellis for QPSK (M = 4) with
J1 = J2 = 2, and P = 2 parallel branches. The four different states
of trellis stage t are labeled with s̄0

t through s̄3
t .

Especially the computation of the reference signals requires many
expensive complex-valued multiplications. These can be split into
two parts according to

e(̄st−1, s̄t) =

es︷ ︸︸ ︷
L−1∑
k=1

s̄t−kĥk +

eb︷︸︸︷
s̄tĥ0 . (6)

The partial reference signals es and eb depend only on the sym-
bols associated with the state s̄t−1 and the branch corresponding to
s̄t, respectively. Although each of the NM different e(̄st−1, s̄t)
is unique, they all can be computed by adding one of the N state-
dependent es and one of the M branch-dependent eb.

In fully-parallel implementations, all reference signals have to
be computed concurrently. When the completion of a trellis stage
takes several cycles, however, more efficient computation schemes
can be derived by applying pre-computation and storing the differ-
ent incarnations of eb or es. The stored partial reference signals are
simply combined by addition to generate the final e(̄st−1, s̄t) ac-
cording to (6). It has been shown in [9] for the case of a DDFSE
that the number of multiplications can be drastically reduced by pre-
computation of es. In the following we discuss the trade-off between
computational and storage complexity for the more general case of
RSSE and include also the possibility of pre-computing eb.

3.1. Trade-Off between Computational and Storage Complexity

In the following analysis we assume that the state metric update (3)
of a state s̄t is completed before the metric of the next state is up-
dated. This requires that the branch metrics of all branches arriving
at the current state are computed by combining the corresponding es
and eb. Every state metric update requires a combination of differ-
ent es and eb, but the same es and eb are used several times. Hence,
whenever the partial reference signals are reused, they must be either
recomputed or loaded from a memory.

When no pre-computation is applied, both partial reference sig-
nals must be calculated for all branches of a trellis stage, resulting
in

Cfull = NML (7)

complex-valued multiplications per trellis stage. The number Cfull

is composed of NM(L− 1) multiplications for the computation of
all es and NM multiplications for the computation of all eb.

2529

0

50

100

150

200

250

N
u
m

b
e
r

o
f
m

u
lt
ip

lic
a
ti
o
n

s
 p

e
r

s
ta

g
e

Multiplications

0

5

10

15

20

25

S
to

ra
g
e

 c
a
p
a
c
it
y
 i
n
 w

o
rd

s

Cstate Cbranch Ccomb Cstate Cbranch Ccomb Cstate Cbranch Ccomb

(8/1/1) (4/2/1) (2/2/2)

Storage

Fig. 2. Computational complexity vs. storage requirements for
M = 16,N = 8 andL = 4 for different values of (J1/J2/J3). The
number of multiplications without pre-computation is Cfull = 512.

Applying a pre-computation strategy for the es requires a mem-
ory capacity of J1 words to store the es corresponding to all prede-
cessor states of a state s̄t. In this way, every es needs to be calculated
only once. In the example of Fig. 1 (J1 = 2), pre-computation of es
for the two states s̄0

t−1 and s̄1
t−1 enables the state metric update for

the states s̄0
t and s̄2

t . After that, the pre-computed es are no longer
required and can be overwritten. This reduces the number of multi-
plications for the computation of es fromNM(L−1) toN(L−1).
Having the es of all predecessor states stored has the advantage that
an eb of a given symbol can be used for all branches that connect to
the different predecessor states, before a new eb is calculated. This
reduces the number of multiplications for eb from NM to NP . The
total number of multiplications for the case of J1 pre-computed es
is thus given by

Cstate = N(L− 1) +NP . (8)

Conversely, the eb can be pre-computed such that all eb need to
be computed only once. This reduces the number of multiplications
for eb fromMN toM . To achieve this, all P parallel branches must
be pre-computed and stored. The availability of the eb for all parallel
branches has the advantage that the same es can be used for all P
parallel branches before a new es is computed, reducing the number
of multiplications for es from NM(L − 1) to NJ1(L − 1). The
total number of multiplications per stage can be reduced to

Cbranch = NJ1(L− 1) +M (9)

by providing a storage capacity for P words.
When the two pre-computation strategies are combined, all es

and eb must be calculated only once. To this end, the eb of all
possible M symbols must be pre-computed and stored in memory.
Furthermore, the es of J1 states must be available in memory. By
providing a storage capacity of J1 + M words, the number of mul-
tiplications can be reduced to

Ccomb = N(L− 1) +M . (10)

The trade-off between storage and computational complexity for
the four strategies discussed above is visualized in Fig. 2 for an ex-
ample trellis with N = 8 states, M = 16, and a CIR of length
L = 4. This setup allows for three different RSSE configurations,
i.e., (8/1/1), (4/2/1), and (2/2/2) for (J1/J2/J3). While the se-
lection of the configuration is subject to algorithmic evaluations, the
most suitable hardware architecture for each configuration can be
found by considering the options of Fig. 2. The figure illustrates that

Sharing of

9 real MULT

for:

memory

State

metric

memory

min

Decision

memory

Modulated

symbol

LUT

Survivor

memory

memory

Backtracing

CIR

estimate

demodulated bits

pre-computation

branch

metric

computation

ACS unit

3 cplx. MULT

4 ABS(.)

Received

samples

index of

Fig. 3. Block diagram of RSSE hardware implementation.

with our presented pre-computation approach the number of multi-
plications per trellis stage can be greatly reduced from 512 (Cfull)
down to 40 (Ccomb). Since storage and computational complexity
are two independent optimization criteria, there are many Pareto op-
timal solutions. However, a visualization of the trade-off helps to
find the most suitable solution for a given design goal.

4. RSSE IMPLEMENTATION FOR EVOLVED EDGE

In order to show the suitability of our design-space exploration for
VLSI implementation, we have implemented an RSSE solution for
a 2.75G E-EDGE baseband transceiver in dedicated hardware. To
this end, the implemented RSSE supports GMSK, 8PSK, 16QAM
and 32QAM modulation, and processes 2 trellises of 58 symbols
per GSM burst (cf., [12]).) For 16QAM and 32QAM, the RSSE is
configured (4/2/2) with 16 trellis states, and for 8PSK and GMSK
modulation the RSSE is configured (2/2/2) with 8 states. Simula-
tions have shown that these RSSE configurations provide close-to-
MLSE performance for the different modulation types when apply-
ing a channel shortening filter [1] in front of the RSSE.

As storage requirements for a 16-state trellis are fairly low, the
combined pre-computation approach was chosen and the es of all
16 predecessor states and the eb of all 32 possible symbols are pre-
computed (cf. Sec. 3). Thus, the number of multiplications per trellis
stage has been greatly reduced from 4096 (no pre-computation) to
144 at the cost of a storage capacity of 48 pre-computed words.

4.1. VLSI Architecture

A block diagram of the corresponding RSSE architecture is de-
picted in Fig. 3. Inputs to the block are the estimated CIR and
the received samples at symbol rate. In a first step, all es and eb
are pre-computed. Then, corresponding es and eb are summed up
to reference signals which are subtracted from the received signal
rk. The branch metric computation (2) is completed by calculating
the square of the absolute value. For all calculated branch metrics
Γ(̄st−1, s̄t), the ACS unit adds the state metric A(̄st−1) of the cor-
responding predecessor state to get the path metric and determines

2530

10 15 20 25 30 35

10
-2

10
-1

SNR

B
E
R

DDFSE

RSSE (4/2/2)

RSSE HW model

25 26 27 28 29 30

Fig. 4. BER performance of 32QAM under Hilly Terrain (HT) chan-
nel conditions [7] for DDFSE, RSSE with J1 = 4, J2 = J2 = 2 and
corresponding hardware model.

the index of the winning symbol s̄t as well as the new state metric
A(̄st) which is then stored in the state metric memory. The index
of the winning symbol is stored in both the decision memory for
the final back-tracing process and in the survivor memory where
the L − 1 survivor symbols for each state are stored. Based on the
survivor symbols, the modulated symbols for the pre-computation of
the next trellis stage are derived by accessing a look-up table (LUT)
with the indices corresponding to the survivor symbols.

In order to optimize the area utilization of our design, the mul-
tipliers for the pre-computation are reused for the calculation of Eu-
clidean distances. To achieve the required throughput at our target
clock frequency of 52 MHz, 9 real-valued multipliers are employed
which can be either used for 3 complex-valued multiplications2 or
for 4 squaring operations.

Several storage elements in our architecture require parallel ac-
cess to four words in the same clock cycle. Thus, they are realized
most efficiently with flip-flop arrays. The large decision memory as
well as the two memories used for the storage of survivor symbols
are realized with single-port RAMs, in order to save silicon area.

The design has been manufactured in a 0.18µm CMOS technol-
ogy and a chip photograph is depicted in Fig. 5. It has been measured
on a digital tester to run at a clock frequency of 124 MHz. The clock
frequency required to achieve the target throughput is more than two
times lower. This cycle-time headroom provides the possibility to
scale down the supply voltage for power savings.

Table 1 compares our design with the only previously published
2.75G detector [8]. The performance in terms of bit-error rate (BER)
of the implemented algorithms is comparable, as can be seen in
Fig. 4, and the implementation loss of our design is within 0.2 dB.
It has already been shown in [13] for EDGE with 8PSK, that RSSE
requires less states than DDFSE to achieve the same BER perfor-
mance. When employing a hardware efficiency measure defined by
the area in gate equivalents (GE) divided by the maximal through-
put, our solution shows an efficiency gain of 1.6 when compared to
the other E-EDGE solution based on DDFSE.

2With Gauss’ complex multiplication algorithm, the number of real-
valued multiplications can be reduced to 3.

Fig. 5. Chip photograph of 16-state RSSE.

Table 1. Published 2.75G Viterbi equalizer implementations

Publication This work [8]

Algorithm RSSE DDFSE
Number of trellis states 16 32

Technology UMC 180 nm ST 130 nm

Gate counta [kGE] 61.3 94.7
Memory [kb] 6.2 11

fmax [MHz] 124 151 (109b)
ftarget [MHz] 52 40

Maximal Θ [Mbit/s] 3.3 4.4 (3.2b)

HW efficiency [kGE/(Mbit/s)] 18.6 21.5 (29.6b)

aIncluding memories.
bScaling to 180 nm [14]: tpd ∼ 1/l

5. CONCLUSIONS

Modern wireless communication receivers require high-performance
channel equalizer solutions that meet the (moderate) throughput re-
quirements at reasonably low complexity. RSSE is a suitable candi-
date that allows for a multitude of algorithmic and architectural real-
izations. To this end, the concept of pre-computation enables a sig-
nificant reduction of computational complexity at the cost of a small
amount of storage capacity in RSSE implementations. The effi-
ciency of RSSE architectures with pre-computation has been shown
with our measured ASIC implementation of a 2.75G channel equal-
izer, that achieves a 1.6 times higher hardware efficiency, when com-
pared to a corresponding DDFSE design with similar performance.

6. ACKNOWLEDGMENT

This work was funded by CTI, Switzerland (project no 11370.1
PFNM-NM) in collaboration with Advanced Circuit Pursuit (ACP)
AG. In addition we want to thank Abiraam Varathan and Hirad
Rezaeian for their valuable work on the hardware implementation as
well as Beat Muheim and Frank Gürkaynak for their support during
the back-end design of the ASIC.

2531

7. REFERENCES

[1] C. Benkeser, S. Zwicky, H. Kröll, J. Widmer, and Qiuting
Huang, “Efficient channel shortening for higher order mod-
ulation: Algorithm and architecture,” in Circuits and Systems
(ISCAS), IEEE International Symposium on, May 2012, pp.
2377–2380.

[2] M.V. Eyuboglu and S.U.H. Qureshi, “Reduced-state sequence
estimation for coded modulation of intersymbol interference
channels,” Selected Areas in Communications, IEEE Journal
on, vol. 7, no. 6, pp. 989–995, Aug 1989.

[3] A. Duel-Hallen and C. Heegard, “Delayed decision-feedback
sequence estimation,” Communications, IEEE Transactions
on, vol. 37, no. 5, pp. 428–436, May 1989.

[4] E.F. Haratsch and K. Azadet, “High-speed reduced-state se-
quence estimation,” in IEEE International Symposium on Cir-
cuits and Systems, May 2000, vol. 3, pp. 387–390.

[5] E.F. Haratsch and K. Azadet, “A 1-Gb/s joint equalizer and
trellis decoder for 1000BASE-T Gigabit Ethernet,” Solid-State
Circuits, IEEE Journal of, vol. 36, no. 3, pp. 374–384, March
2001.

[6] E.F. Haratsch and Z.A. Keirn, “Digital signal processing in
read channels,” in Custom Integrated Circuits Conference,
Proceedings of the IEEE, Sept 2005, pp. 683–690.

[7] “3GPP; tech. spec. group GSM/EDGE radio access network;
radio transmission and reception,” Nov 2009.

[8] C. Benkeser, A. Bubenhofer, and Qiuting Huang, “A 4.5mW
digital baseband receiver for level-A Evolved EDGE,” in
IEEE International Solid-State Circuits Conference (ISSCC),
Feb 2010, pp. 276–277.

[9] C. Benkeser and Q. Huang, “Design and optimization of a dig-
ital baseband receiver ASIC for GSM/EDGE,” in VLSI-SoC:
Forward-Looking Trends in IC and Systems Design, vol. 373
of IFIP Advances in Information and Communication Technol-
ogy, pp. 100–127. Springer Boston, 2012.

[10] G. Ungerboeck, “Channel coding with multilevel/phase sig-
nals,” Information Theory, IEEE Transactions on, vol. 28, no.
1, pp. 55–67, Jan 1982.

[11] C. Benkeser, Power Efficiency and the Mapping of Commu-
nication Algorithms into VLSI, Ph.D. thesis, ETH Zürich,
Switzerland, Series in Microelectronics, vol. 209, Hartung-
Gorre Verlag Konstanz, 2010.

[12] “3GPP; tech. spec. group GSM/EDGE radio access network;
physical layer on the radio path; general description,” Nov
2009.

[13] W.H. Gerstacker and R. Schober, “Equalization concepts for
edge,” Wireless Communications, IEEE Transactions on, vol.
1, no. 1, pp. 190–199, Jan 2002.

[14] B. Razavi, Design of analog CMOS integrated circuits,
McGraw-Hill, 2002.

2532

