REDUCED-COMPLEXITY BINARY-WEIGHT-CODED ASSOCIATIVE MEMORIES

Hooman Jarollahi, Naoya Onizawa, Vincent Gripon, and Warren J. Gross

Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, H3A 0E9
{hooman.jarollahi, naoya.onizawa, vincent.gripon} @mail.mcgill.ca, warren.gross @mcgill.ca

ABSTRACT

Associative memories retrieve stored information given par-
tial or erroneous input patterns. Recently, a new family of
associative memories based on Clustered-Neural-Networks
(CNNs) was introduced that can store many more messages
than classical Hopfield-Neural Networks (HNNs). In this pa-
per, we propose hardware architectures of such memories for
partial or erroneous inputs. The proposed architectures elim-
inate winner-take-all modules and thus reduce the hardware
complexity by consuming 65% fewer FPGA lookup tables
and increase the operating frequency by approximately 1.9
times compared to that of previous work.

Index Terms— Associative Memories, Hopfield, Clus-
tered Neural Networks, Hardware Implementation

1. INTRODUCTION

Associative Memories (AMs) such as Hopfield Neural Net-
works (HNNs) [1] learn messages by linking the information
bits, and storing the links in a memory module. They can
then quickly retrieve the messages given only part of their
content and using the stored links. Such memories are alter-
natives to indexed memories in which the retrieval process
requires an explicit address and often a serial search opera-
tion. AMs are attractive in certain applications such as data
mining and set implementation where the computations can
benefit from their specific functioning [2, 3, 4, 5] where the
exhaustive search operation in series is eliminated.

Content-Addressable Memories (CAM) are specific types
of such memories used in a variety of applications such as
image processing and network routers. However, CAMs con-
sume large amounts of power due to the presence of parallel
comparators [6]. In some applications such as Translational
Lookaside Buffers (TLBs), they can only contain few entries
[7].

The state-of-the-art HNNs suffer from two major draw-
backs: First, in order to increase the size of memory, the
length of the messages need to be unnecessarily increased.
Therefore, the number of different messages HNNs can learn
(diversity) is low since due to a fixed capacity, they can only
store few long messages instead of many short ones. Second,
the ratio between the number of information bits that it can

978-1-4799-0356-6/13/$31.00 ©2013 IEEE

2523

store to the memory bits that it requires to store the links (ef-
ficiency) approaches zero as the memory size is increased.

Recently, a new class of AMs has been proposed [2] based
on Clustered-Neural-Networks (CNNs) which has a large di-
versity, and provides a nearly-optimal efficiency [8].

A proof-of-concept hardware architecture of CNNs has
recently been proposed in [9], where the authors show that
when implemented in hardware, the architecture provides
significant speedup compared to its software counterpart.
However, the previous architecture requires resource-hungry
Winner-Take-All (WTA) modules, which are based on a clas-
sical compare-and-select algorithm.

In this paper, we introduce two hardware architectures:
one useful for applications that need to recover partly erased
input patterns and the other to correct inputs with erroneous
bits. The proposed architectures introduce new decoding
methods that eliminate the requirement to employ the WTA
modules in [9, 8, 2], and also improve the design complexity
by reducing the area requirement and increasing the maxi-
mum operating frequency. In addition, the proposed archi-
tectures have a similar error performance — the number of
correctly retrieved messages to that of the total inputs. The
algorithm is briefly explained from a hardware design per-
spective in Section 2, and the hardware implementations are
introduced in Section 3. Section 4 summarizes the results and
is followed by conclusions in Section 5.

2. ASSOCIATIVE MEMORIES USING CLUSTERED
NEURAL NETWORKS

Inspired from HNNs [1], CNNs are made of simple comput-
ing nodes (neurons) and binary connection weights as shown
in Fig. 1. More precisely, the network consists of n binary
neurons arranged into ¢ equally-partitioned clusters. Each
cluster is associated with a portion of a message to be learned
or retrieved. Unlike HNNSs, the connection weights in CNNs
are binary, i.e. a connection either exists or not. In addition,
the network is c-partite which means that two neurons in a
same cluster cannot be connected. A partial input pattern is
presented and a sparse set of neurons are activated which rep-
resent the matching learned pattern. The set is then encoded
to form the full output pattern, also called a clique.

ICASSP 2013

{ Q ’"\CI) Clique
Fig. 1. Graphical representation of neurons, clusters and
cliques.

2.1. Message Training

The training of the network is initiated by dividing a binary
input message m of K bits into equal portions of x bits each
resulting in the creation of ¢ = K/k sub-messages. Each
cluster in the network consists of [= 2" binary neurons. For
simplicity, a simple function that maps the binary value of
each input sub-message to its equivalent integer number be-
tween 1 to [is considered. This integer value is the index of
the neuron to be activated in each cluster. Once the neurons
corresponding to an input message are determined in all of
the clusters, the corresponding binary connections are added
to the network, and stored in a block of memory. In other
words, once all the connections have been determined for the
message to learn, a neural clique is constructed as shown in
Fig. 1.

In this paper w(c, 1;)(c,/ 40) refers the binary interconnec-
tion weights between the j’th neuron of the ¢’th cluster to the
4’ neuron of the ¢’ cluster.

2.2. Message Retrieval

To retrieve a message, we first determine which neurons
should be activated given a partial or erroneous input pattern
and using a similar method as in training. Because we are go-
ing to match against a partial message, multiple neurons for
a cluster might be activated. We then use the interconnection
weights between clusters to allow the learned associations
between portions of the learned message to affect which neu-
rons should be activated. This process iterates until only one
neuron per cluster is activated or the number of activated neu-
rons is not changed. The active set of neurons is then encoded
to form the output. The decoding process is performed in two
stages: Local Decoding (LD) and Global Decoding (GD).
Only GD is performed iteratively to retrieve the message.

2.2.1. Conventional Algorithm

Local Decoding: In the conventional LD [2, 3, 8, 9], the in-
dex of the neurons to be activated in each cluster is determined
using the scalar product of a pre-designed matrix of size [X k
bits, g, with each part of the input message I. The g matrix
contains ordered binary values between 1 to [. The process is
then followed by finding the maximum value of the neurons
that would exceed a certain threshold value o. The last step is

referred to winner-take-all rule in neural networks where only
the neuron(s) with maximum value (v,,,4,) Will be activated.

Global Decoding: Following LD, GD is performed using the
product of the neural values obtained from LD and the stored
weight values. The winner-take-all rule is then applied. This
procedure continues in an iterative process on each neuron
until the values converge.

2.2.2. Proposed Local Decoding

It is possible to simplify the functioning of the conventional
LD [2, 8, 9] by considering the fact that the maximum pos-
sible value for a neuron in LD is directly dependent on the
number of erased bits per cluster. Therefore, it can be derived
to be equal to x — n. where n, is the number of erased bits
(1). This simplification will eliminate the need to apply the
winner-take-all rule after finding scalar product of g and I.

ol {

1, ifv(n;) =K —ne
0, otherwise

M

2.2.3. Proposed Global Decoding

It is possible to reduce the complexity of the conventional GD
using two methods:

Method I: It can be shown that the value of a neuron be-
ing globally decoded can be determined to be (or remain) ac-
tivated only if it receives at least one signal from every other
cluster than itself, i.e. the ambiguities of other clusters will
not have an effect on the value of the neuron being computed
in GD [8] as shown in the following:

L2V, (w6 v(nae) +
Yo(ng) >0 2)
0, otherwise

v(ng5) <

where v(n; ;) is the binary value of the j’th neuron in the
1’th cluster, V; performs an [-input OR function, and o is a

threshold value that can be adjusted to fine-tune the error rate
in case the input messages are erroneous instead of contain-
ing erased bits. If o = v + ¢ — 1, this method can only be
useful for retrieving inputs containing erased bits and not for
the erroneous ones.

As an example, let us assume a network comprised of
three clusters (¢ = 3), two neurons each (I = 2), vy = 1, and
a single learned message “010”. An erroneous input message
“110” will activate a false neuron in the first cluster. There-
fore, if o = ¢, all neurons will switch off after the first itera-
tion and therefore the network will not retrieve the message.
On the other hand, if o = ¢ — 1, the network will be able to
retrieve the correct message.

This algorithm is the basis of the first proposed hardware
implementation (Architecture I) explained later in this paper.

Method II: In cases where the input messages are not
erroneous and only contain erased bits, a neuron is activated

2524

Training Learning

Message ., | Module e (e-1). P
#of
Iterations log(T) + 1
Input Retrieved
Message . Message
2(c.x} Local | , ,|lteration| Global Output
Decoder| ¢, /| Module| . ; Decoder el Encoder| /
g / . . C.K
K.2"
Input Threshold
Message Generation| /
%2 (¢ K)_Module ¢

Fig. 2. Simplified block diagram of the top level hierarchy
with shaded proposed modules compared to [9].

when it equal to y+c—1, where «y is set to 1 in this paper. This
simplification is the basis of the second proposed hardware
implementation of this paper (Architecture II).

Method I (2) can therefore be altered to suit digital circuit
implementation by removing the sum and using logic symbols
as follows:

Lot ALV, (wir o))

v(nig) < v(ni,5))
0, otherwise

3)

where /\, performs the c-input AND function. This

method can only be used for a case when bit erasures exist,
and will not work for erroneous input corrections. This al-
gorithm is the basis of Architecture II explained later in this
paper.

3. PROPOSED HARDWARE IMPLEMENTATION

The proposed architectures are based on the proposed local
decoding (1), Method I (2) and Method II (3) global decoding
algorithms explained earlier. The new hardware decoding al-
gorithms were implemented using the same network param-
eters (128 neurons, 8 clusters) as in [9], such that the com-
parison would be consistent. Furthermore, a larger network
(432 neurons, 8 clusters) was also implemented to demon-
strate how the ratio of logic to memory is scaled in the pro-
posed architecture.

3.1. Design Hierarchy

A top-level system diagram addressing the proposed hard-
ware implementations is depicted in Fig. 2. The input mes-
sages contain antipodal values (—1 or +1) or zeros to indicate
erasure. The difference between this design hierarchy and that
reported in [9] is in the way both the local and the global de-
coders are implemented.

3.2. Message Processing

An incoming message is either to be trained or retrieved. The
training of the network is achieved by storing the binary con-
nection weights in a two-dimensional Flip-Flop (FF) array as

shown in [9]. These FF’s are accessed independently. The
amount of memory required to store these connection weights
is given by c(c — 1)I2.

3.2.1. Proposed Architecture of Local Decoder

The proposed architecture of LD is based on (1). The process
is initiated determining the threshold value using threshold
generator as shown in Fig. 3 (a) which can vary depending on
the number of erased bits in a cluster. The generated threshold
values are fed into the LD module as shown in Fig. 3 (b). It
activates the neuron(s) in each cluster and no longer requires
resource-hungry WTA modules as in [9].

3.2.2. Proposed Architectures of Global Decoder

The proposed GD architectures are depicted in Fig. 4(a), 4
(b). These architectures are called GD architecture I and ar-
chitecture II and are based on (2) and (3) respectively. To
elaborate on the behaviour of these structures, let us assume
that the value of the j’th neuron of cluster ¢ is to be computed.
The global decoder computing the value of each neuron has
three types of inputs: 1) w(; jy(i,;/)» the binary weights from
the training module connecting all neurons excluding the ¢’th
cluster to n; 5, 2) V(i 1) the neuron’s binary value in the clus-
ters excluding the ¢’th cluster, and 3) v; ;), the neuron’s bi-
nary value of the computing neuron constructing the mem-
ory effect. ¢ and ¢t + 1 denote the current and next iteration
moments respectively. In the hardware implementation, the
memory effect coefficient, +, is considered to be equal to 1
(also discussed in [2, 9]), which will also simplify the hard-
ware design since all neuron values will be integers in all it-
erations.

In GD architecture I, similar to the previous architecture
in [9], the multiplication of the binary weights, obtained from
the memory, and the neural values in the clusters excluding
the cluster of which the neural value is being computed, is
achieved using two-input AND gates. As opposed to the pre-
vious method (finding the maximum value using the compare-
and-select method), the binary multiplication results construct
the inputs to a set of multiple-input OR gates which will out-
put one signal per cluster. Then, the output from the OR
gates, as well as the neural value obtained from LD are added
together and compared with a threshold value equal to ¢ or
lower. The target neuron will remain activated if the com-
parator outputs a ‘1’. Removing the adder and replacing an
c-input AND gate will result in a fixed threshold for Architec-
ture II as shown in Fig. 4 (b).

4. RESULTS

The proposed architectures of CNNs have been implemented
using an Altera Stratix IV (EP4SGX230KF40C2) Field Pro-
grammable Gate Array (FPGA). After verification of the re-
sults using a similar method described in [9], the hardware
complexities, and the performances were compared. The re-
sults are summarized in Table 1. Fig. 5 depicts the FPGA

2525

Table 1. FPGA resource allocation comparing CNN architectures with design parameters reported in [9].

Previous work [9]

Architecture 1

Architecture II

Memory usage dedicated to w (bits)

14,336

14,336

14,336

Registers 15,783/182,400(9%) | 15,048/182,400(8%) | 15,035/182,400(8%)
Combinational Look-up Tables (LUT) 35,224/182,400(19%) | 13,244/182,400(7%) | 12,341/182,400(7%)
Total pins 169,/888(19%) 169,/888(19%) 169/888(19%)
Slow 900mv 85C maximum frequency (Mhz) 107.15 203.78 205.21
Training, Retrieving delay (per message) 10 ns, 50 ns Sns, 25 ns 5ns,25ns

100) |
(1)

1(2¢-2) |
12k -1)]

Fig. 3. Block diagram of the architecture of (a) the threshold
generator (b) Local Decoder.

Table 2. FPGA resource allocation comparing two networks
(n =128) and (n = 432).

n =128 | n =432

Registers (Prev.[9]) 15,783 | 160,745
Registers (Proposed Arch. II) | 15,035 161, 331
LUT (Prev.[9]) 35,224 | 359,127

LUT (Proposed Arch. II) 12,341 | 147,808

(OOl -~ 4 vah 1| b
| Ev’(};}.ﬁfﬁ [Wi @jjo))
HOCY ey || \
At |
L V\SAY ! | |
I \\A{ | |l |
(i)1) A
@ fxa.e), /1.0
\ Y | _ \
I ~__ 1 - — |
\ I \
\ I \
- - - T g
(a) (b)

Fig. 4. Hardware implementation of the proposed Global De-
coder Architecture I (a) and II (b).

results of error performance for various densities. Each point
obtained from the FPGA is associated with the average MER
of 1000 test vectors applied to each of the 20 networks under
test. It also shows software simulation results with similar pa-
rameters. The message densities are calculated according to
[2].

Using a network with n; = 128 neurons and 8 clusters,
Architecture I and II consume 62.4% and 65.0% fewer LUTs
respectively than Architecture I while the number of registers
are similar. With a larger network comprised of ny = 432

0.8+ Prev. work, it=1 -
Prev. work, it=4
Arch I, II: Software, it=1] |
Arch |, Il: Software, it=4
* Archl, Il: FPGA, it=1
A Arch |, 1l: FPGA, it=4

0.6-

0.4r

0.2r

Message Error Rate (MER)

| I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Message Density

Fig. 5. Comparison between the average MERs of the pro-
posed architectures and that of [9] using FPGAs, and soft-
ware simulation (n = 128, ¢ = 8, Number of erased clusters
(random position): 4, FPGA number of input test vectors per
network: 1000, FPGA number of networks per density: 20).

neurons and 8 clusters, the previous architecture, unlike the
proposed ones in this paper, can no longer fit within the same
area as shown in Table 2. Furthermore, it is interesting to note
that ny/n; = 3.4 is larger than the ratio of the correspond-
ing number of LUTs (=~ 2.43). This comparison shows that
growth of the number of neurons is larger than the growth of
the number of LUTs. The maximum clock frequency in the
FPGA has also been improved by ~ 1.9 times resulting in
lower computational delay.

5. CONCLUSION

In this paper two hardware architectures were proposed for a
new class of associative memories. The proposed architec-
tures are suitable to either recover partially erased input pat-
terns, or to correct erroneous input bits respectively. These
memories can be used in a variety of applications such as
data mining, and set implementation. The proposed architec-
tures introduce decoding methods that reduce the hardware
complexity by consuming 62.4% and 65% fewer lookup ta-
bles respectively. Furthermore, the proposed architectures in-
crease the operating frequency approximately 1.9 times com-
pared to that of previous work while having a similar error
performance. We introduced novel hardware techniques that
eliminated the resource-hungry Winner-Take-All circuits in
the previous architecture, and replaced it with simpler logic
without sacrificing the error performance. The results were
compared with that of previous work and their functionalities
were verified using a similar verification strategy.

2526

6. REFERENCES

[1] J. J. Hopfield, “Neural networks and physical systems
with emergent collective computational abilities,” Pro-
ceedings of the National Academy of Sciences of the USA,
vol. 79, no. 8, pp. 25542558, Apr. 1982.

[2] V. Gripon and C. Berrou, “Sparse neural networks with
large learning diversity,” IEEE Transactions on Neural
Networks, vol. 22, no. 7, pp. 1087-1096, Jul. 2011.

[3] V. Gripon and C. Berrou, “A simple and efficient way to
store many messages using neural cliques,” in 2011 IEEE
Symposium on Computational Intelligence, Cognitive Al-
gorithms, Mind, and Brain (CCMB), Apr. 2011, pp. 1-5.

[4] A. Knoblauch, “Optimal synaptic learning in non-linear
associative memory,” in The 2010 International Joint
Conference on Neural Networks (IJCNN), Jul. 2010, pp.
1-7.

[5] O. Qadir, J. Liu, J. Timmis, G. Tempesti, and
A. Tyrrell, “Hardware architecture for a bidirectional
hetero-associative protein processing associative mem-
ory,” in 2011 IEEE Congress on Evolutionary Compu-
tation (CEC), Jun. 2011, pp. 208-215.

[6] K. Pagiamtzis and A. Sheikholeslami, “Content-
addressable memory (CAM) circuits and architectures: a
tutorial and survey,” IEEE Journal of Solid-State Circuits,
vol. 41, no. 3, pp. 712-727, Mar. 2006.

[7] Yen-Jen Chang and Mao-Feng Lan, “Two new techniques
integrated for energy-efficient TLB design,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems,
vol. 15, no. 1, pp. 13-23, Jan. 2007.

[8] Vincent Gripon and Claude Berrou, “Nearly-optimal as-
sociative memories based on distributed constant weight
codes,” in Proceedings of Information Theory and Appli-
cations Workshop, San Diego, CA, USA, Feb. 2012, pp.
269-273.

[9] H.Jarollahi, N. Onizawa, V. Gripon, and W.J. Gross, “Ar-
chitecture and implementation of an associative memory
using sparse clustered networks,” in 2012 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), May
2012, pp. 2901-2904.

2527

