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                                        ABSTRACT 

Errors in MLC NAND Flash can be classified into retention errors 

and program interference (PI) errors. While retention errors are 

dominant when the data storage time is greater than 1 day, PI 

errors are dominant for short data storage times. Furthermore these 

two types of errors have different probabilities of 0->1 or 1->0 bit 

flips. We utilize the characteristics of the two types of errors in the 

development of ECC schemes for applications that have different 

storage times. In both cases, we first apply Gray coding and 2-bit 

interleaving. The corresponding most significant bit (MSB) and 

least significant bit (LSB) sub-page has only one type of 

dominating error (0->1 or 1->0). Next we form a product code 

using linear block code along rows and even parity check along 

columns to detect all the possible error locations. We develop an 

algorithm to choose errors among the possible error locations 

based on the dominant error type. Performance simulation and 

hardware implementation results show that the  proposed solutions 

have the same performance as BCH codes with larger error 

correction capability but with significantly lower hardware 

overhead. For instance, for a 2KB MLC Flash used in long storage 

time applications, the proposed ECC scheme has 50% lower 

energy and 60% lower decoding latency compared to the BCH 

scheme. 

 

Index Terms— Flash memories, multi-level cell, retention an d 

program interference errors, error correction codes 

1. INTRODUCTION 

Flash memories are used in storage devices such as memory cards, 

USB flash drives, and solid-state drives [1]. We focus on multi-

level cell (MLC) NAND Flash memories which store 2 or more 

bits per cell by supporting 4 or more voltage states. These have 

greater storage density than single–level cell (SLC) NAND Flash 

and are becoming increasingly popular.  

Unfortunately, NAND Flash memories suffer from write/read 

disturbs, data retention errors and bad block accumulation. Also, 

reliability of MLC memory is lower due to reduced gap between 

adjacent threshold levels. To enhance the reliability, techniques 

such as wear leveling, bad block management and garbage 

collection have been proposed [2]-[4].  

In addition, to handle random soft errors, error detection/correction 

codes (ECC), such as Hamming codes [5], and long linear block 

codes such as the Bose-Chaudhuri-Hocquenghem (BCH) codes 

have been used in [6]-[7]. Schemes based on concatenation of 

BCH codes and Trellis Coding Modulation (TCM) and Low 

Density Parity Check (LDPC) have also been proposed in [8], [9], 

respectively. 

While most errors in existing Flash memories are random, in 

scaled technologies, the increase in the threshold voltage variation 

can cause multiple bits to be upset (MBU) at the same time. Byte-

level ECC such as Reed Solomon (RS) code [10][11] has been 

proposed to deal with MBUs. In [12], we proposed a product ECC 

scheme using RS codes along rows and Hamming codes along 

columns to achieve very high error correction capability. 

Unfortunately the storage overhead of our scheme was large and 

the error correction capability was an overkill for typical error 

patterns. 

Recently, a comprehensive analysis of error sources in MLC Flash 

memories was presented in [13]. It summarized the threshold 

voltage distribution resulting from program/erase (P/E) cycles, 

cell-to-cell interference and data storage time, and presented a 

simplified model to quantize these errors. A second paper [14] 

provided an empirical analysis of error patterns in 3x-nm MLC 

Flash memory. The key observations were that (i) a shift in the 

threshold voltage distribution from high to low results in retention 

errors and a shift in the threshold voltage distribution from low to 

high results in program interference errors (PI), (ii) either retention 

errors or PI errors are dominant; if the data storage time is longer 

than 1 day, retention errors are dominant, while PI errors are 

dominant if the data storage time is less than 1 day. We utilize 

these characteristics in the development of ECC schemes for 

applications with very different data storage times. In both cases, 

we first apply Gray coding and 2-bit interleaving. As a result, the 

errors in the MSB sub-page and LSB sub-page are either of type 0-

>1 or of type 1->0. Then we use product code based ECC where 

linear block codes are used along rows and even parity check along 

columns. We use even parity since it has minimal latency overhead 

and does not increase storage as much. The area and latency of the 

linear block codes is smaller since they operate on sub-pages and 

use lower Galois Field (GF(211) instead of GF(212)). Since the even 

parity is a weak code, we describe a simple way of detecting 

possible error locations by cross checking. We successfully correct 

most of the errors by using a scheme that utilizes the fact that each 

of the sub-pages has an error type that is dominant and that the 

probability of errors after row decoding is quite small.  

 

Simulation results show that in a 2KB MLC Flash used in long 

storage time applications, the proposed ECC scheme with 

BCH(1046,1024,t=2)+even parity check has the same performance 

2513978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



 

 

as regular BCH(2084,2048,t=3) with 50% lower energy and 60% 

lower latency.  For short storage time applications, we propose an 

ECC scheme with Hamming(1036,1024)+even parity check. It has 

the same performance as regular BCH(2072,2048,t=2), higher area 

but with only 1% decoding latency compared to the BCH  code. 

The rest of the paper is organized as follows. Section 2 summarizes 

the error sources and models. The two proposed schemes for 

different data storage time applications are given in Section 3. 

Section 4 presents the decoding performance of the proposed 

schemes and compare them with other ECC schemes. Section 5 

compares the hardware overhead of all the candidate schemes. 

Section 6 concludes the paper. 

 
2. ERROR MODELS  

2.1. Error Sources 

There are many sources of errors in MLC Flash memories. Single 

event upset (SEU) can be caused by charged particles due to sun 

activity or other ionization mechanisms [15]. Moreover, since all 

the programmed levels must be allocated in a predetermined sized 

voltage window, there is reduced spacing between adjacent 

programmed levels, making the MLC memories less reliable. In 

fact, there are two major types of errors in MLC Flash memory: 

retention error and program interference (PI) error. 

Retention error occurs because data stored in the memory cell 

changes due to gradual dissipation of the charge programmed in 

the floating gate. Retention error is dependent on the number of 

P/E cycles. P/E operation physically wears out the tunnel oxide of 

the floating gate by charging traps into the oxide and interface 

states[16]-[19], and as a result the threshold voltage of memory 

cell is  reduced and the data retention time is lowered. 

PI error occurs when the threshold voltage of memory cells 

changes due to the cell-to-cell interference from neighboring cells. 

This effect is due to parasitic capacitance coupling [20] and it 

happens in every P/E operation. In even/odd bit-line structure, even 

cells and odd cells have different cell-to-cell interference [14]. In 

contrast, cells in an all-bit-line structure suffers less cell-to-cell 

interference, and supports high-speed read/verify [13]. In this 

paper, we consider the all-bit-line structure though all the 

techniques proposed here are also applicable to the even/odd bit-

line structure. 

2.2. Error Models 

We utilize the key characteristics of PI and retention errors 

described in [14]. First, all types of errors increase as the number 

of P/E cycles increases. Second, for any fixed number of P/E 

cycles, error rates of different types of errors vary significantly. 

The retention error rates grow as the data storage time increases, 

and retention errors dominate when the data storage time is longer 

than 1 day. However when the data storage time is less than 1 day, 

PI errors dominate. Thus, the type of errors that dominate are 

different for different Flash memory applications. For instance, PI 

errors dominate if the Flash memory is used as the virtualized 

memory in lab computers, where P/E frequency could be very high 

but the data is not stored beyond a day. On the other hand, if Flash 

memory is used in USB driver for long term storage, retention 

errors are dominant.     

Test results in [14] also show that the retention errors and PI errors 

are value dependent; their flipping probabilities are different for 

the different logical states of a 2bit MLC Flash. Table 1 lists the 

four highest error probabilities of retention and PI errors [14].       

Table 1.   Error probabilities of retention errors and program 

interference errors [14]. 

Retention errors 00->01,  

46% 

01->10,  

44% 

01->11, 

 5% 

10->11,  

2% 

Other 

  3% 

PI errors 11->10, 
 70% 

10->01,  
24% 

10->00,  
2.2% 

11->01,  
1.5% 

Other 
  1.9% 

                  

3. PROPOSED ECC SCHEMES 

We propose a 2 step strategy to handle both retention errors and PI 

errors in NAND Flash memories. In the first step, we apply Gray 

code and 2bit interleaving to distribute bits of one page into two 

sub-pages (Section 3.1). This technique makes sure that only one 

type of error (0->1 or 1->0) dominates in a sub-page. In the second 

step, we apply a product code using linear block code along rows 

and even parity check along columns (Section 3.2). We identify all 

the possible error locations and correct the bit with the highest 

error probability in each column (Section 3.3). This scheme only 

works because the sub-pages have one type of error that is 

dominant. 

3.1 Gray coding and 2bit interleaving 

 

 

10 11 00 10 01...Information 

MSB

LSB

1 1 0 1 0...

0 01 10

PL PM

LSB encoder

MSB encoder  
Fig.1 Encoding flow of MSB-LSB interleaving technique. 

During encoding, we first apply Gray coding and then split the n 

bit page across two sub-pages each of size n/2 as shown in Fig.1. 

Sub-pages are encoded by the product code encoder and the parity 

bits are stored separately as PM and PL. During decoding, sub-

pages are decoded separately as well. 

Table 2.  Probability of different error types after Gray coding and 

interleaving.  

  MSB 0->1 MSB 1->0 LSB 0->1 LSB 1->0 

Retention errors       88% 12%    97%      3% 

PI errors        2% 98%  96.5%     3.5% 

Next we show how different sub-pages have very different 

dominant error types. For retention errors, according to the 2-bit 

error patterns in Table 1, 00->01 errors contribute to 46% of 0-

>1errors in LSB. Similarly the 01->10 errors which translates to 

01->11 errors (due to Gray code) contribute to 44% 0->1errors in 

MSB. Taking into account these errors and others due to 01->10 

and 11->10, we find that in both the MSB sub-page and the LSB-

sub-page the 0->1 errors dominate; the probability of 0->1errors in 

MSB sub-page is 88%, the probability of 0->1errors in LSB sub-

page is 97%. Similarly for the PI errors, the 1->0 errors dominate 

in the MSB sub-page and the 0->1 errors dominate in the LSB sub-
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page; the probability of 1->0 errors in MSB sub-page is 98%, the 

probability of 0->1errors in LSB sub-page is 96.5%. 

 

3.2 Product code schemes 

Fig.2 shows the product code structure. During encoding, even 

parity check is done along columns followed by linear block code 

along rows. In this case, the parity bits of even parity check are 

also coded and protected by linear block code. In decoding, rows 

are decoded first and the rows that contain more than t errors, 

where t is the error correction capability of the block code, are 

marked. Then even parity check finds the columns containing 

errors. The intersections of these rows and columns are the 

possible error locations as shown in Fig.3. 
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Fig.2 Product code scheme. 

Table 3 lists the proposed product code based schemes. When the 

data storage time is longer than 1 day, retention errors are 

dominant and the error rate is higher than 10-3. We can only use 

BCH (2084,2048,t=3) to correct errors or we can achieve 

equivalent error correction performance by using 

BCH(1046,1024,t=2) along rows and  even parity check along 

columns. Similarly when data storage time is less than 1 day, PI 

errors are dominant, and the error rate is lower than 10-4. We can 

either use only BCH(2072,2048,t=2) or product scheme of 

Hamming (1036,1024) along rows and even parity check along 

columns. The performance comparison of the candidate schemes  

is given in Section 4.   

Table 3. Proposed data storage time aware ECC of 2KB/page 2bit 

MLC Flash. 

 
Data storage 
time 

            >  1day                <1day 

Dominant error 

type 

    Retention errors Interference errors 

Error rate range            >10-3                 <10-4 

Proposed 
scheme 

8 BCH(1046,1024) 
along rows and even 

parity check (9,8) along 

columns 

8 Hamming (1036,1024) 
along rows and even 

parity check (9,8) along 

columns 

Comparable 

scheme 

4 BCH(2084,2048) 

8 BCH(1046,1024) 

4 BCH(2072,2048) 

8 Hamming (1036,1024) 

 

3.3 Error detection and correction  

 

As described in Section 3.2, during decoding a subpage, if we 

mark m rows in which there are more than t errors and n columns 

containing errors, then there are m*n possible error locations as 

shown as light circles in Fig.3. Dark circles indicate the dominant 

errors in this sub-page. Since the number of elements in a column 

is very small (8 for a 2KB page), the probability that 2 errors occur 

in the same column is very low. So we can assume that there are n 

errors among m*n possible locations with one error per column, 

and pick one error location (dark circle) from m candidates in each 

column. We propose the following selection algorithm when the 

dominant error type is 0->1. The selection algorithm for the case 

when the dominant error type is 1->0 is quite similar. 

1. Count the number of 1s in each of the n columns and m rows. 

Label the count along columns as E1, E2, …En, and the count along 

rows as L1, L2,…Lm. T is the largest Ei for 1≤i≤n. 

2. For a=1, if Ei=a, 1≤i≤n, flip the 1 in the row that has smallest L. 

Update the corresponding value of Lj,1≤j≤m. 

3. Increase a by 1 and repeat step 2 till a=T.  

This algorithm can not guarantee correcting all the errors that 

could be corrected by using stronger ECC or iterative row 

decoding. But it reduces the number of errors as will be 

demonstrated in the next section and is a cost effective way of 

achieving higher error performance.  

 

E1

L1

L2

Lm

E2 E3 E4 En  
Fig. 3 Error detection and correction scheme. Light circles indicate 

the possible error locations  and the dark circles indicate the 

locations of the dominant errors. 

 

4. SIMULATION RESULTS 

In this section, we simulate the decoding performance of the 

different candidate schemes listed in Table 3 for a 2KB MLC Flash 

memory. The results are presented in Fig.4(a) for retention errors 

(when the data storage time is more than 1 day), and Fig.4(b) for PI 

errors (when the data storage time is less than 1 day). In Fig.4(a), 

we see that the proposed product code with BCH(1046,1024,t=2) 

along rows and even parity along columns used for MSB and LSB 

sub-pages has the same performance as regular 

BCH(2084,2048,t=3). Similarly, proposed product code using 

Hamming (1036,1024) along rows and even parity along columns 

has almost the same performance as regular BCH(2072,2048,t=2). 

Moreover, compared to using only linear block code along rows, 

we see that product code with even parity check reduces the error 

rate by about 0.8 decade for both retention and PI errors. 

 

Note that BCH(1046,1024,t=2) along rows and even parity along 

columns that is used when data storage time is > 1day (Fig4(a)) 

can not achieve BER around 10-9 to 10-10. In this case, the raw 

BER is higher than 10-3, and to achieve decoding performance of 

10-9, the error correction capability has to be increased from t=2 to 

t=6. This increases the storage overhead from 12.7% to 18.9% and 

use of the t=6 code may not be practical. We are currently looking 

into an alternative scheme based on employing a ‘refresh’ strategy 

where data is read out, corrected and stored back into memory 

every 1 or 2 days. The decoding performance would then be as 
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good as the case when data storage time is <1 day at the expense of 

additional energy consumption.   

 

 
                                             (a) 

 
                                             (b) 

Fig.4 Performance comparison of candidate ECC schemes when 

(a) data storage time >1day, (b) data storage time <1day .  

 

5. HARDWARE IMPLEMENTATION 

In this section we compare the hardware overhead of proposed 

product detection code and regular BCH code based scheme as 

shown in Table 3. All architectures have been synthesized in 45nm 

technology using Nangate cell library [21] and Synopsys Design 

Compiler [22]. BCH decoders use pipelined simplified inverse-free 

Berlekamp-Massey (SiBM) algorithm. The 2t-folded SiBM 

architecture [6] is used to minimize the circuit overhead of Key-

equation solver at the expense of increase in latency. A parallel 

factor of 8 is used for syndrome calculation and Chien search. 

For data storage time >1 day, we consider Scheme1 which is 

BCH(2084,2048,t=3) and Scheme2 which is product scheme with 

two BCH(1046,1024,t=2)+even parity check. The latency of 

Scheme2 is significantly lower than that of Scheme1 since it 

operates on 1024 bits instead of 2048 bits. While the number of 

cycles of syndrome calculation is reduced, the critical path is also 

reduced from 0.72ns to 0.65ns since the order of Galois Field is 

reduced from 212 to 211. The reduction of energy is partly due to 

latency reduction and use of BCH with lower t. The extra storage 

rate of Scheme2 is 12.7% which is higher than that of Scheme1 but 

close to the standard memory ECC overhead of 12.5%. Overall 

Scheme2 has 50% energy saving and 60% latency saving 

compared to Scheme1.  

For data storage time <1 day, we consider Scheme3 which is 

BCH(2072,2048,t=2) and Scheme4 which is product scheme with 

two Hamming(1036,1024)+even parity check. Scheme4 has 

significant lower decoding latency but much larger area compared 

to Scheme3. This is because Hamming code used in Scheme4 can 

decode data in 3 cycles. For most NAND Flash memories, area of 

ECC in not the primary concern compared to the decoding latency, 

and so Scheme4 is preferred over Scheme3.  

Table 4. Hardware overhead of different ECC schemes. Scheme1 

is BCH(2084,2048); Scheme2 is 2BCH(1046,1024) +even parity 

check; Scheme3 is BCH(2072,2048); Scheme4 is 2 

Hamming(1036,1024) +even parity check. Latency in this table is 

decoding latency. 

 Energy (pJ)  Latency(ns)  Area (µm2) Extra Storage Rate  

Scheme1     2186     3676     3838           1.7%  

Scheme2     1060     1520     4030          12.7% 

Scheme3     1532     3574     2686           2.1% 

Scheme4     632      18.3    52118          12.6% 

 

6. RELATED WORK 

To enhance the reliability of NAND Flash memories, system level 

and architecture level techniques have been proposed on [2]-[4] 

while ECC based techniques have been proposed in [5]-[9]. Since 

the error correction capability of Hamming code [5] is not 

sufficient for increased error rate in NAND Flash memories, 

especially for MLC NAND Flash in scaled technology nodes, BCH 

code based ECC schemes [6]-[7] and LDPC code based ECC 

scheme [8][9] have been proposed. Symbol codes, such as RS 

codes were used in [10][11] to deal with multi-bit upset(MBU) in 

NAND Flash memories. In [12], we proposed a product code using 

RS codes and Hamming codes to achieve high error correction 

performance with low hardware overhead. However, that scheme 

was an overkill for small size MBUs. Recently, a thorough analysis 

of all kinds of error sources in NAND Flash memories was given 

in [13] and empirical results of error pattern distributions in 2bit 

MLC NAND Flash memories were given in [14]. We utilize the 

error characteristics outlined in [14] and propose simple ECC 

schemes to handle these errors. The proposed schemes have 

significantly lower hardware overhead compared to the earlier 

ECC schemes that were proposed for MLC NAND Flash 

memories.  

7. CONCLUSION 

In this paper, we utilize the characteristics of retention errors and 

PI errors that were described in [14] to design data storage time 

sensitive ECC schemes. The proposed schemes handle PI errors 

when the data storage time is small and retention errors when the 

data storage time is larger than 1 day. For both schemes, we first 

apply Gray coding and 2-bit interleaving to ensure that only one 

type of error (0->1 or 1->0) dominates in the MSB and LSB sub-

pages. Then we propose a product code using linear block code 

along rows and even parity check along columns to detect all the 

possible error locations. Next, we develop an algorithm to choose 

errors among the possible error locations based on the dominant 

error type. When data storage time is >1 day,  proposed  

BCH(1046,1024,t=2)+even parity check saves 50% energy and 

60% decoding latency compared to BCH(2084,2048,t=3) while the 

performance is the same. When data storage time is <1 day, 

proposed Hamming(1036,1024)+even parity check can achieve the 

same performance as BCH(2084,2048,t=2), with very small 

decoding latency. 
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