

 __

 This work was supported in part by a grant from NSF, CSR 0910699.

Data Storage Time Sensitive ECC Schemes for MLC NAND Flash Memories

C. Yang, D. Muckatira, A. Kulkarni, C. Chakrabarti

School of Electrical, Computer and Energy Engineering,

 Arizona State University, Tempe, AZ 85287

{chengen.yang, dmuckati, aakulka5, chaitali}@asu.edu

 ABSTRACT

Errors in MLC NAND Flash can be classified into retention errors

and program interference (PI) errors. While retention errors are

dominant when the data storage time is greater than 1 day, PI

errors are dominant for short data storage times. Furthermore these

two types of errors have different probabilities of 0->1 or 1->0 bit

flips. We utilize the characteristics of the two types of errors in the

development of ECC schemes for applications that have different

storage times. In both cases, we first apply Gray coding and 2-bit

interleaving. The corresponding most significant bit (MSB) and

least significant bit (LSB) sub-page has only one type of

dominating error (0->1 or 1->0). Next we form a product code

using linear block code along rows and even parity check along

columns to detect all the possible error locations. We develop an

algorithm to choose errors among the possible error locations

based on the dominant error type. Performance simulation and

hardware implementation results show that the proposed solutions

have the same performance as BCH codes with larger error

correction capability but with significantly lower hardware

overhead. For instance, for a 2KB MLC Flash used in long storage

time applications, the proposed ECC scheme has 50% lower

energy and 60% lower decoding latency compared to the BCH

scheme.

Index Terms— Flash memories, multi-level cell, retention an d

program interference errors, error correction codes

1. INTRODUCTION

Flash memories are used in storage devices such as memory cards,

USB flash drives, and solid-state drives [1]. We focus on multi-

level cell (MLC) NAND Flash memories which store 2 or more

bits per cell by supporting 4 or more voltage states. These have

greater storage density than single–level cell (SLC) NAND Flash

and are becoming increasingly popular.

Unfortunately, NAND Flash memories suffer from write/read

disturbs, data retention errors and bad block accumulation. Also,

reliability of MLC memory is lower due to reduced gap between

adjacent threshold levels. To enhance the reliability, techniques

such as wear leveling, bad block management and garbage

collection have been proposed [2]-[4].

In addition, to handle random soft errors, error detection/correction

codes (ECC), such as Hamming codes [5], and long linear block

codes such as the Bose-Chaudhuri-Hocquenghem (BCH) codes

have been used in [6]-[7]. Schemes based on concatenation of

BCH codes and Trellis Coding Modulation (TCM) and Low

Density Parity Check (LDPC) have also been proposed in [8], [9],

respectively.

While most errors in existing Flash memories are random, in

scaled technologies, the increase in the threshold voltage variation

can cause multiple bits to be upset (MBU) at the same time. Byte-

level ECC such as Reed Solomon (RS) code [10][11] has been

proposed to deal with MBUs. In [12], we proposed a product ECC

scheme using RS codes along rows and Hamming codes along

columns to achieve very high error correction capability.

Unfortunately the storage overhead of our scheme was large and

the error correction capability was an overkill for typical error

patterns.

Recently, a comprehensive analysis of error sources in MLC Flash

memories was presented in [13]. It summarized the threshold

voltage distribution resulting from program/erase (P/E) cycles,

cell-to-cell interference and data storage time, and presented a

simplified model to quantize these errors. A second paper [14]

provided an empirical analysis of error patterns in 3x-nm MLC

Flash memory. The key observations were that (i) a shift in the

threshold voltage distribution from high to low results in retention

errors and a shift in the threshold voltage distribution from low to

high results in program interference errors (PI), (ii) either retention

errors or PI errors are dominant; if the data storage time is longer

than 1 day, retention errors are dominant, while PI errors are

dominant if the data storage time is less than 1 day. We utilize

these characteristics in the development of ECC schemes for

applications with very different data storage times. In both cases,

we first apply Gray coding and 2-bit interleaving. As a result, the

errors in the MSB sub-page and LSB sub-page are either of type 0-

>1 or of type 1->0. Then we use product code based ECC where

linear block codes are used along rows and even parity check along

columns. We use even parity since it has minimal latency overhead

and does not increase storage as much. The area and latency of the

linear block codes is smaller since they operate on sub-pages and

use lower Galois Field (GF(211) instead of GF(212)). Since the even

parity is a weak code, we describe a simple way of detecting

possible error locations by cross checking. We successfully correct

most of the errors by using a scheme that utilizes the fact that each

of the sub-pages has an error type that is dominant and that the

probability of errors after row decoding is quite small.

Simulation results show that in a 2KB MLC Flash used in long

storage time applications, the proposed ECC scheme with

BCH(1046,1024,t=2)+even parity check has the same performance

2513978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

as regular BCH(2084,2048,t=3) with 50% lower energy and 60%

lower latency. For short storage time applications, we propose an

ECC scheme with Hamming(1036,1024)+even parity check. It has

the same performance as regular BCH(2072,2048,t=2), higher area

but with only 1% decoding latency compared to the BCH code.

The rest of the paper is organized as follows. Section 2 summarizes

the error sources and models. The two proposed schemes for

different data storage time applications are given in Section 3.

Section 4 presents the decoding performance of the proposed

schemes and compare them with other ECC schemes. Section 5

compares the hardware overhead of all the candidate schemes.

Section 6 concludes the paper.

2. ERROR MODELS

2.1. Error Sources

There are many sources of errors in MLC Flash memories. Single

event upset (SEU) can be caused by charged particles due to sun

activity or other ionization mechanisms [15]. Moreover, since all

the programmed levels must be allocated in a predetermined sized

voltage window, there is reduced spacing between adjacent

programmed levels, making the MLC memories less reliable. In

fact, there are two major types of errors in MLC Flash memory:

retention error and program interference (PI) error.

Retention error occurs because data stored in the memory cell

changes due to gradual dissipation of the charge programmed in

the floating gate. Retention error is dependent on the number of

P/E cycles. P/E operation physically wears out the tunnel oxide of

the floating gate by charging traps into the oxide and interface

states[16]-[19], and as a result the threshold voltage of memory

cell is reduced and the data retention time is lowered.

PI error occurs when the threshold voltage of memory cells

changes due to the cell-to-cell interference from neighboring cells.

This effect is due to parasitic capacitance coupling [20] and it

happens in every P/E operation. In even/odd bit-line structure, even

cells and odd cells have different cell-to-cell interference [14]. In

contrast, cells in an all-bit-line structure suffers less cell-to-cell

interference, and supports high-speed read/verify [13]. In this

paper, we consider the all-bit-line structure though all the

techniques proposed here are also applicable to the even/odd bit-

line structure.

2.2. Error Models

We utilize the key characteristics of PI and retention errors

described in [14]. First, all types of errors increase as the number

of P/E cycles increases. Second, for any fixed number of P/E

cycles, error rates of different types of errors vary significantly.

The retention error rates grow as the data storage time increases,

and retention errors dominate when the data storage time is longer

than 1 day. However when the data storage time is less than 1 day,

PI errors dominate. Thus, the type of errors that dominate are

different for different Flash memory applications. For instance, PI

errors dominate if the Flash memory is used as the virtualized

memory in lab computers, where P/E frequency could be very high

but the data is not stored beyond a day. On the other hand, if Flash

memory is used in USB driver for long term storage, retention

errors are dominant.

Test results in [14] also show that the retention errors and PI errors

are value dependent; their flipping probabilities are different for

the different logical states of a 2bit MLC Flash. Table 1 lists the

four highest error probabilities of retention and PI errors [14].

Table 1. Error probabilities of retention errors and program

interference errors [14].

Retention errors 00->01,

46%

01->10,

44%

01->11,

 5%

10->11,

2%

Other

 3%

PI errors 11->10,
 70%

10->01,
24%

10->00,
2.2%

11->01,
1.5%

Other
 1.9%

3. PROPOSED ECC SCHEMES

We propose a 2 step strategy to handle both retention errors and PI

errors in NAND Flash memories. In the first step, we apply Gray

code and 2bit interleaving to distribute bits of one page into two

sub-pages (Section 3.1). This technique makes sure that only one

type of error (0->1 or 1->0) dominates in a sub-page. In the second

step, we apply a product code using linear block code along rows

and even parity check along columns (Section 3.2). We identify all

the possible error locations and correct the bit with the highest

error probability in each column (Section 3.3). This scheme only

works because the sub-pages have one type of error that is

dominant.

3.1 Gray coding and 2bit interleaving

10 11 00 10 01...Information

MSB

LSB

1 1 0 1 0...

0 01 10

PL PM

LSB encoder

MSB encoder
Fig.1 Encoding flow of MSB-LSB interleaving technique.

During encoding, we first apply Gray coding and then split the n

bit page across two sub-pages each of size n/2 as shown in Fig.1.

Sub-pages are encoded by the product code encoder and the parity

bits are stored separately as PM and PL. During decoding, sub-

pages are decoded separately as well.

Table 2. Probability of different error types after Gray coding and

interleaving.

 MSB 0->1 MSB 1->0 LSB 0->1 LSB 1->0

Retention errors 88% 12% 97% 3%

PI errors 2% 98% 96.5% 3.5%

Next we show how different sub-pages have very different

dominant error types. For retention errors, according to the 2-bit

error patterns in Table 1, 00->01 errors contribute to 46% of 0-

>1errors in LSB. Similarly the 01->10 errors which translates to

01->11 errors (due to Gray code) contribute to 44% 0->1errors in

MSB. Taking into account these errors and others due to 01->10

and 11->10, we find that in both the MSB sub-page and the LSB-

sub-page the 0->1 errors dominate; the probability of 0->1errors in

MSB sub-page is 88%, the probability of 0->1errors in LSB sub-

page is 97%. Similarly for the PI errors, the 1->0 errors dominate

in the MSB sub-page and the 0->1 errors dominate in the LSB sub-

2514

page; the probability of 1->0 errors in MSB sub-page is 98%, the

probability of 0->1errors in LSB sub-page is 96.5%.

3.2 Product code schemes

Fig.2 shows the product code structure. During encoding, even

parity check is done along columns followed by linear block code

along rows. In this case, the parity bits of even parity check are

also coded and protected by linear block code. In decoding, rows

are decoded first and the rows that contain more than t errors,

where t is the error correction capability of the block code, are

marked. Then even parity check finds the columns containing

errors. The intersections of these rows and columns are the

possible error locations as shown in Fig.3.

…

E
v
e

n
 p

a
ri
ty

 c
h

e
c
k

Row Parity

C
o

lu
m

n

P
a

ri
ty

Cross

Parity

…

Linear block code

Fig.2 Product code scheme.

Table 3 lists the proposed product code based schemes. When the

data storage time is longer than 1 day, retention errors are

dominant and the error rate is higher than 10-3. We can only use

BCH (2084,2048,t=3) to correct errors or we can achieve

equivalent error correction performance by using

BCH(1046,1024,t=2) along rows and even parity check along

columns. Similarly when data storage time is less than 1 day, PI

errors are dominant, and the error rate is lower than 10-4. We can

either use only BCH(2072,2048,t=2) or product scheme of

Hamming (1036,1024) along rows and even parity check along

columns. The performance comparison of the candidate schemes

is given in Section 4.

Table 3. Proposed data storage time aware ECC of 2KB/page 2bit

MLC Flash.

Data storage
time

 > 1day <1day

Dominant error

type

 Retention errors Interference errors

Error rate range >10-3 <10-4

Proposed
scheme

8 BCH(1046,1024)
along rows and even

parity check (9,8) along

columns

8 Hamming (1036,1024)
along rows and even

parity check (9,8) along

columns

Comparable

scheme

4 BCH(2084,2048)

8 BCH(1046,1024)

4 BCH(2072,2048)

8 Hamming (1036,1024)

3.3 Error detection and correction

As described in Section 3.2, during decoding a subpage, if we

mark m rows in which there are more than t errors and n columns

containing errors, then there are m*n possible error locations as

shown as light circles in Fig.3. Dark circles indicate the dominant

errors in this sub-page. Since the number of elements in a column

is very small (8 for a 2KB page), the probability that 2 errors occur

in the same column is very low. So we can assume that there are n

errors among m*n possible locations with one error per column,

and pick one error location (dark circle) from m candidates in each

column. We propose the following selection algorithm when the

dominant error type is 0->1. The selection algorithm for the case

when the dominant error type is 1->0 is quite similar.

1. Count the number of 1s in each of the n columns and m rows.

Label the count along columns as E1, E2, …En, and the count along

rows as L1, L2,…Lm. T is the largest Ei for 1≤i≤n.

2. For a=1, if Ei=a, 1≤i≤n, flip the 1 in the row that has smallest L.

Update the corresponding value of Lj,1≤j≤m.

3. Increase a by 1 and repeat step 2 till a=T.

This algorithm can not guarantee correcting all the errors that

could be corrected by using stronger ECC or iterative row

decoding. But it reduces the number of errors as will be

demonstrated in the next section and is a cost effective way of

achieving higher error performance.

E1

L1

L2

Lm

E2 E3 E4 En
Fig. 3 Error detection and correction scheme. Light circles indicate

the possible error locations and the dark circles indicate the

locations of the dominant errors.

4. SIMULATION RESULTS

In this section, we simulate the decoding performance of the

different candidate schemes listed in Table 3 for a 2KB MLC Flash

memory. The results are presented in Fig.4(a) for retention errors

(when the data storage time is more than 1 day), and Fig.4(b) for PI

errors (when the data storage time is less than 1 day). In Fig.4(a),

we see that the proposed product code with BCH(1046,1024,t=2)

along rows and even parity along columns used for MSB and LSB

sub-pages has the same performance as regular

BCH(2084,2048,t=3). Similarly, proposed product code using

Hamming (1036,1024) along rows and even parity along columns

has almost the same performance as regular BCH(2072,2048,t=2).

Moreover, compared to using only linear block code along rows,

we see that product code with even parity check reduces the error

rate by about 0.8 decade for both retention and PI errors.

Note that BCH(1046,1024,t=2) along rows and even parity along

columns that is used when data storage time is > 1day (Fig4(a))

can not achieve BER around 10-9 to 10-10. In this case, the raw

BER is higher than 10-3, and to achieve decoding performance of

10-9, the error correction capability has to be increased from t=2 to

t=6. This increases the storage overhead from 12.7% to 18.9% and

use of the t=6 code may not be practical. We are currently looking

into an alternative scheme based on employing a ‘refresh’ strategy

where data is read out, corrected and stored back into memory

every 1 or 2 days. The decoding performance would then be as

2515

good as the case when data storage time is <1 day at the expense of

additional energy consumption.

 (a)

 (b)

Fig.4 Performance comparison of candidate ECC schemes when

(a) data storage time >1day, (b) data storage time <1day .

5. HARDWARE IMPLEMENTATION

In this section we compare the hardware overhead of proposed

product detection code and regular BCH code based scheme as

shown in Table 3. All architectures have been synthesized in 45nm

technology using Nangate cell library [21] and Synopsys Design

Compiler [22]. BCH decoders use pipelined simplified inverse-free

Berlekamp-Massey (SiBM) algorithm. The 2t-folded SiBM

architecture [6] is used to minimize the circuit overhead of Key-

equation solver at the expense of increase in latency. A parallel

factor of 8 is used for syndrome calculation and Chien search.

For data storage time >1 day, we consider Scheme1 which is

BCH(2084,2048,t=3) and Scheme2 which is product scheme with

two BCH(1046,1024,t=2)+even parity check. The latency of

Scheme2 is significantly lower than that of Scheme1 since it

operates on 1024 bits instead of 2048 bits. While the number of

cycles of syndrome calculation is reduced, the critical path is also

reduced from 0.72ns to 0.65ns since the order of Galois Field is

reduced from 212 to 211. The reduction of energy is partly due to

latency reduction and use of BCH with lower t. The extra storage

rate of Scheme2 is 12.7% which is higher than that of Scheme1 but

close to the standard memory ECC overhead of 12.5%. Overall

Scheme2 has 50% energy saving and 60% latency saving

compared to Scheme1.

For data storage time <1 day, we consider Scheme3 which is

BCH(2072,2048,t=2) and Scheme4 which is product scheme with

two Hamming(1036,1024)+even parity check. Scheme4 has

significant lower decoding latency but much larger area compared

to Scheme3. This is because Hamming code used in Scheme4 can

decode data in 3 cycles. For most NAND Flash memories, area of

ECC in not the primary concern compared to the decoding latency,

and so Scheme4 is preferred over Scheme3.

Table 4. Hardware overhead of different ECC schemes. Scheme1

is BCH(2084,2048); Scheme2 is 2BCH(1046,1024) +even parity

check; Scheme3 is BCH(2072,2048); Scheme4 is 2

Hamming(1036,1024) +even parity check. Latency in this table is

decoding latency.

 Energy (pJ) Latency(ns) Area (µm2) Extra Storage Rate

Scheme1 2186 3676 3838 1.7%

Scheme2 1060 1520 4030 12.7%

Scheme3 1532 3574 2686 2.1%

Scheme4 632 18.3 52118 12.6%

6. RELATED WORK

To enhance the reliability of NAND Flash memories, system level

and architecture level techniques have been proposed on [2]-[4]

while ECC based techniques have been proposed in [5]-[9]. Since

the error correction capability of Hamming code [5] is not

sufficient for increased error rate in NAND Flash memories,

especially for MLC NAND Flash in scaled technology nodes, BCH

code based ECC schemes [6]-[7] and LDPC code based ECC

scheme [8][9] have been proposed. Symbol codes, such as RS

codes were used in [10][11] to deal with multi-bit upset(MBU) in

NAND Flash memories. In [12], we proposed a product code using

RS codes and Hamming codes to achieve high error correction

performance with low hardware overhead. However, that scheme

was an overkill for small size MBUs. Recently, a thorough analysis

of all kinds of error sources in NAND Flash memories was given

in [13] and empirical results of error pattern distributions in 2bit

MLC NAND Flash memories were given in [14]. We utilize the

error characteristics outlined in [14] and propose simple ECC

schemes to handle these errors. The proposed schemes have

significantly lower hardware overhead compared to the earlier

ECC schemes that were proposed for MLC NAND Flash

memories.

7. CONCLUSION

In this paper, we utilize the characteristics of retention errors and

PI errors that were described in [14] to design data storage time

sensitive ECC schemes. The proposed schemes handle PI errors

when the data storage time is small and retention errors when the

data storage time is larger than 1 day. For both schemes, we first

apply Gray coding and 2-bit interleaving to ensure that only one

type of error (0->1 or 1->0) dominates in the MSB and LSB sub-

pages. Then we propose a product code using linear block code

along rows and even parity check along columns to detect all the

possible error locations. Next, we develop an algorithm to choose

errors among the possible error locations based on the dominant

error type. When data storage time is >1 day, proposed

BCH(1046,1024,t=2)+even parity check saves 50% energy and

60% decoding latency compared to BCH(2084,2048,t=3) while the

performance is the same. When data storage time is <1 day,

proposed Hamming(1036,1024)+even parity check can achieve the

same performance as BCH(2084,2048,t=2), with very small

decoding latency.

6x10
-3

5x10
-3

4x10
-3

3x10
-3

10
-5

10
-4

10
-3

 MSB(BCH(1046,1024,t=2)+even parity)

 LSB(BCH(1046,1024,t=2)+even parity)

 BCH(2084,2048,t=3)

 Non Product BCH(1046,1024,t=2)

B
E

R
 a

ft
e

r
d

e
c
o

d
in

g

Raw BER

10
-4
9x10

-5
8x10

-5
7x10

-5
6x10

-5
5x10

-5
4x10

-5
3x10

-5

10
-11

10
-10

10
-9

10
-8

10
-7

B
E

R
 a

ft
e

r
d

e
c
o

d
in

g

Raw BER

 MSB(Hamming(1036,1024)+even parity)

 LSB(Hamming(1036,1024)+even parity)

 BCH(2072, 2048,t=2)

 Non Product Hamming(1036,1024)

2516

8. REFERENCES

[1] R. Micheloni, et al., "Non-Volatile Memories for Removable Media,"
Proceedings of the IEEE, vol.97, no.1, pp.148-160, Jan. 2009.

[2] L. M. Grupp, et al., “Characterizing Flash Memory: Anomalies,

Observations, and Applications,” MICRO’09, pp.24-33, Dec. 2009.
[3] N. Mielke, et al, “Bit Error Rate in NAND Flash Memories,” 46th

Annual International Reliability Physics Symposium, Phoenix, pp.9-19,

2008.
[4] P.Desnoyers, “Empirical Evaluation of NAND Flash Memory

Performance,” SIGOPS Oper. Syst. Rev., vol. 44, no. 1. pp. 50-54, 2010.

[5] D. Rossi and C. Metra, “Error Correcting Strategy for High Speed and
High Density Reliable Flash Memories,” J. Electronic Testing: Theory and

Applications, vol.19, no.5, pp.511-521, Oct. 2003.
[6] H. Choi, W. Liu, and W. Sung, “VLSI Implementation of BCH Error

Correction for Multilevel Cell NAND Flash Memory,” IEEE Trans. on

VLSI Systems, vol. 18, no. 5, pp.843-847, May 2010.
[7] T. Chen, Y. Hsiao, Y. Hsing, and C. Wu, “An Adaptive-Rate Error

Correction Scheme for NAND Flash Memory,” 27th IEEE VLSI Test

Symposium, pp.53-58, 2009.
[8] S. Li, T. Zhang, “Improving Multi-Level NAND Flash Memory Storage

Reliability Using Concatenated BCH-TCM Coding,” IEEE Trans. on VLSI

Systems, vol.18, no.10, pp 1412-1420, Oct 2010.
[9] Y. Maeda and H. Kaneko, “Error Control Coding for Multilevel Cell

Flash Memories Using Nonbinary Low-Density Parity-Check Codes”,

IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems, pp.367-
375, 2009.

[10] STMicroelectronics, ST72681 ,USB 2.0 high-speed Flash drive

controller, http://www.st.com/stonline/books/pdf/docs/11352.pdf
[11] XceedIOPS SATA SSD, SMART’s Storage Solutions.

www.smartm.com/files/salesLiterature/storage/xceediops_SATA.pdf

[12] C. Yang, Y. Emre and C. Chakrabarti, “Product Code Schemes for
Error Correction in MLC NAND Flash Memories,” IEEE Trans. on VLSI

Systems, vol.20, no.12, pp.2302-2314, 2012.

[13] G.Dong, Y.Pan, N. Xie, C. Varanasi and T. Zhang, “Estimating
information-theoretical NAND Flash memory storage capacity and its

implication to memory system design space exploration,” IEEE Trans. on

VLSI Systems, vol. 20, no. 9, pp.1705-1714, 2012.
[14] Y.Cai, E.F. Haratsch, O.Mutlu and K.Mai, “Error patterns in MLC

NAND Flash memory: measurement, characterization, and analysis,”

Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp.521-526, 2012.

[15] F. Wrobel, et al., “Simulation of Nucleon-Induced Nuclear Reactions

in a Simplified SRAM Structure: Scaling Effects on SEU and MBU Cross
Sections,” IEEE Trans. on Nuclear Science, vol. 48, no. 6, pp. 1946-1952,

Dec. 2001.

[16] P. Olivo, B. Ricco, and E. Sangiorgi, “High-field-induced voltage-
dependent oxide charge,” Appl. Phys. Letter, vol. 48, p. 1135, 1986.

[17] P. Cappelletti, R. Bez, D. Cantarelli, and L. Fratin, “Failure

mechanisms of flash cell in program/erase cycling,” in Proc. Int. Electron
Devices Meet., 1994, pp. 291–294.

[18] H. Kurata, K. Otsuga, A. Kotabe, S. Kajiyama, T. Osabe, Y. Sasago,

S. Narumi, K. Tokami, S. Kamohara, and O. Tsuchiya, “Random telegraph

signal in flash memory: Its impact on scaling of multilevel flash memory

beyond the 90-nm node,” IEEE J. Solid-State Circuits, vol.42, no. 6, pp.

1362–1369, Jun. 2007.
[19] N. Mielke, H. Belgal, I. Kalastirsky, P. Kalavade, A. Kurtz, Q. Meng,

N. Righos, and J. Wu, “Flash EEPROM threshold instabilities due to

charge trapping during program/erase cycling,” IEEE Trans. on Device
and Materials Reliability, vol. 4, no. 3, pp. 335–344, Sep. 2004.

[20] J.D. Lee, S.H. Hur, and J.D. Choi, “Effects of floating-gate

interference on NAND flash memory cell operation,” IEEE Electron.
Device Letter, vol. 23, no. 5, pp. 264–266, May 2002.

[21] Nangate, Sunnyvale, California, 2008, “45nm open cell library”,

http://www.nangate.com/.
[22] Synopsys Design Compiler: http://www.synopsys.com.

2517

