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ABSTRACT

In this paper, we present a compressive sensing-based im-
age denoising algorithm using spatially adaptive image rep-
resentation and estimation of optimal error tolerance based
on sparse signal analysis. The proposed method performs
block-based multiple compressive sampling after decompos-
ing the sparse signal into feature and non-feature regions us-
ing simple statistical analysis. For minimization of recovery
error and number of iterations, the modified OMP method es-
timates the optimal error tolerance using the average variance
in the recovery step. Experimental results demonstrate that
the proposed denoising algorithm better removes noise with-
out undesired artifacts than existing state-of-the-art methods
in terms of both objective (PSNR/SSIM) and subjective mea-
sures. Processing time of the proposed method is 5 to 10 times
faster than the standard OMP-based method.

Index Terms— Compressed sensing, matching pursuit
algorithms, image denoising

1. INTRODUCTION

Based on the theory of compressive sensing (CS) a sparse sig-
nal can be reconstructed from far fewer samples than the sam-
ples required by the Nyquist rate [1] [2]. For this reason CS
theory has been widely applied to computational photogra-
phy [3], medical imaging [4] and remote sensing [5], to name
a few. In a CS-based image processing system, denoising is
very important to improve the quality of images using a re-
duced amount of data. Especially, it is a challenging problem
to remove the noise while preserving image details because
of the high-frequency characteristics of the noise.

In this paper, we present a CS-based image denoising al-
gorithm using spatially adaptive image reconstruction and op-
timal error tolerance in the sense of sparse signal represen-
tation. For preserving image features, the proposed method
decomposes the sparse signal into feature and non-feature re-

gions using statistical analysis and sparse representation. The
proposed method computes the measurement signals from the
decomposed sparse signals using block-based multiple com-
pressive samplings. The original noise-free image is recov-
ered using orthogonal matching pursuit (OMP) [6] with opti-
mal error tolerance.

Experimental results show that the proposed CS-based
image denoising algorithm can better remove noise while
preserving perceptual quality than existing state-of-the-art
methods. The proposed method consists of two steps: (i) the
block based multiple compressive sampling step after decom-
posing a sparse signal into feature and non-feature regions
and (ii) the recovery step of the original sparse signal using
OMP with optimally estimated error tolerance. The proposed
CS-based image denoising algorithm is shown in Fig. 1.

Fig. 1. Block diagram of the proposed CS-based image de-
noising algorithm.
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2. DECOMPOSITION OF A SPARSE SIGNAL AND
MULTIPLE COMPRESSIVE SAMPLING

Let f be the original image, η the noise, and g the observed
image with additive noise, then the image degradation model
is expressed as

g = f + η. (1)

In general, the noisy image g is transformed into a k-sparse
signal with only k non-zero values using an orthogonal trans-
formation such as the discrete Fourier transform (DFT), dis-
crete cosine transform (DCT), and discrete wavelet transform
(DWT) [1] [2].

In this paper, we use a three-level DWT to decompose
the sparse signal into feature and non-feature regions. For
considering both, implementational efficiency and acceptable
degree of sparsity, we can generate a two-dimensional (2D)
scaling function and three directional wavelet functions using
one-dimension (1D) 8-tap symmetrical wavelet (symlet) fil-
ters [9]. Three levels of the DWT coefficients are respectively
expressed as

ĝ1 = W 1g = [ĝ1LL ĝ
1
LH ĝ1HL ĝ

1
HH ]T , (2)

ĝ2 = W 2ĝ1LL = [ĝ2LL ĝ
2
LH ĝ2HL ĝ

2
HH ]T , (3)

and
ĝ3 = W 3ĝ2LL = [ĝ3LL ĝ

3
LH ĝ3HL ĝ

3
HH ]T , (4)

where WP , P ∈ {1, 2, 3}, represents the 2D DWT matrix of
level P . For decomposing the sparse signal and block-based
multiple compressive sampling, we compute the variance of a
local rectangular p× q block in ĝPLL to decompose the sparse
signal into feature and non-feature regions as

vPxy =
1

pq

∑
(i,j)∈Rxy

{
ĝPLL(i, j)−mxy

}2
, (5)

where Rxy represents an p× q rectangular region centered at
(x, y), and mxy is the local mean. We compute the activity
map of ĝPLL using the local variance value as

αP
xy =

1

1 + θvPxy
, (6)

where the tuning parameter θ is chosen so that the activity
value is distributed uniformly in [0,1], and vPxy is the variance
value. Equation (6) was also used in [10] in the context of
adaptive image restoration. The sparse signals of the LH, HL
and HH sub-bands in each DWT level P are decomposed into
feature and non-feature regions based on the activity map.

The decomposed sparse signals are divided into blocks of
8 × 8 pixels for block-based multiple compressive sampling.
The Block-based CS method [11] [12] can significantly re-
duce the processing time at the cost of segmentation accuracy.
Since only one ĝ3LL does not satisfy the sparsity condition and

takes only 1.5% of the total region, we perform multiple com-
pressive sampling to obtain the sparse signal of compression
ratio r/64 to only the LH, HL, and HH sub-bands using a
Gaussian measurement matrix as follows

YD,B = ΘS̄D,B , for D ∈ {F,N} , B ∈ {1, 2, ...,K} , (7)

where Θ represents the r×64 Gaussian measurement matrix,
D ∈ {F,N} one of the feature (F ) and non-feature (N) re-
gion, B the number of divided blocks, S̄D,B the 64 × 1 1D
vector for the corresponding 8× 8 block of LH, HL, and HH
sub-bands and YD,B the r × 1 sampled measurement signals
with compression ratio of r/64. For the block-based multi-
ple compressive sampling, we used the measurement matrix
of Gaussian probability distribution [6]. These measurement
matrices satisfy the restricted isometry property (RIP) condi-
tion [13], and the original sparse signals can be successfully
recovered form measurement signals.

3. MODIFIED OMP BY ESTIMATING THE
OPTIMAL ERROR TOLERANCE

Recovery of the sparse signals SD,B from (7) is an ill-posed
problem. But the recovery of SD,B is possible by minimizing
the l0-norm of the residual, since SD,B is sparse. The l0 mini-
mization method is, however, an NP-Hard (non-deterministic
polynomial-time hard) problem, and the l1 minimization
method is used as

SD,B = arg min
∥∥S̄D,B

∥∥
1
s.t.

∥∥YD,B −ΘS̄D,B

∥∥
2
≤ ε.

(8)
For deducing the computational complexity, a fast block-
based OMP recovery method has been proposed in [11] [12].
However it cannot successfully recover the original sparse
signal with a certain amount of noise since the recovery er-
ror becomes larger than the error tolerance. In this paper,
we present a modified OMP method by estimating the opti-
mal error tolerance using a property of sparse signal and the
amount of noise.

As shown in Table 1, the modified OMP reconstruction
method consists of four steps. In the initialization step, the
index set I is set to be the empty set, and the measurement
signal YD,B is assigned to the residual vector r. Step 1 es-
timates the optimal error tolerance that will be used for the
termination condition in both feature and non-feature regions.
Since compressively sampled block measurement signals are
8 × 8 block sparse signals from ĝPLH , ĝ

P
HL and ĝPHH before

compressive sampling, we can estimate the statistical charac-
teristics of measured block YD,B using variance of the corre-
sponding ĝPLL.

The sampled measurement signals YF,B of feature regions
can be classified into one of edge, details, and noise com-
ponents based on the property of the activity map generated
from the local variance value [10]. For reconstructing a sparse
signal from measurement signals YF,B with preserving the

2504



Table 1. Modified OMP Method
Input : Θ : measurement matrix

YD,B : measurement signal vector
ε : error tolerance

Output : SD,B : solution vector
Initialization : index data set I = ∅, residual r = YD,B ,

and error tolerance ε = 0.1
repeat D = F,N repeat B = 1, 2, ...,K

step 1 : estimating the optimal error tolerance
error tolerance of feature region
εF ← 1

E[vP
xy ]
× ε

error tolerance of non-feature region
(εN1, εN2)← (E[vPxy]× ε)wi

step 2 : main interaction
λ← largest coordinate |Θ∗r|
I ← I ∪ λ
SD,B = arg min

∥∥YD,B −Θ|I S̄D,B

∥∥
2

step 3 : residual update and check the stop rule
r = YD,B −ΘS̄D,B

if YD,B , D == F

‖r‖2 ≤ εF → SF,B end algorithm
if YD,B , D == N

‖r‖2 ≤ εN1 → SN1,B

repeat
‖r‖2 ≤ εN2 → SN2,B go step 4

step 4 : minimization recovery error
SN,B = 1

2

∑
[SN1,B + SN2,B ] end algorithm

feature components, the error tolerance value should become
as small as possible for minimizing the reconstruction resid-
ual r in the OMP recovery process. For the estimation of the
optimal error tolerance of the B,B ∈ {1, 2, ...,K}-th block
in the feature region of ĝPLH , ĝ

P
HL and ĝPHH , we compute the

mean of variances of K blocks located at the corresponding
ĝPLL. We then estimate the optimal error tolerance that will
be used to recover the measured signal from the B-th block
using the reciprocal value of the computed mean of variance
as

εF =
1

E[vPxy]
× ε, (9)

where E[vpxy] represents the average variance of a block
in ĝPLL whose location is determined by the B-th block in
ĝPLH , ĝ

P
HL and ĝPHH , and ε the constant for adjusting the ini-

tial error tolerance. In this paper, we used ε = 0.1 for the
experiments. On the other hand the sampled measurement
signals YN,B in the non-feature region includes a lot of noise
components based on the property of the activity map. If
we use the error tolerance given in (9), it is impossible to
correctly recover the original sparse signal, and the termina-
tion condition is not suitable for the OMP algorithm because
of the high reconstruction residual vector ‖r‖2 caused by

the noise energy. For removing the noise effect in the OMP
recovery process, the error tolerance value should satisfy
εN ≥ ‖η‖2 by using the average variance E[vpxy] containing
noise energy. In the OMP process for non-feature region, we
estimate two error tolerance values using simple weighting as

εNi = (E[vPxy]× ε)wi, for i ∈ {1, 2} , (10)

where wi represents the weight value. We used w1 = 0.8 and
w2 = 1.5 for the experiment. For removing artifacts caused
by reconstruction error, we combine two differently recov-
ered sparse signals from a sampled measurement YN,B in the
non-feature region in step 4. In step 2, the modified OMP
computes the largest coordinate of |Θ∗r| and the location of
the largest value is added in the index set I . In step 3 the
modified OMP computes a new provisional solution SD,B by
minimizing

∥∥YD,B −Θ|I S̄D,B

∥∥
2
, and updates the residual

vector r = YD,B − ΘS̄D,B . For recovering the sparse signal
SF,B in the feature region from an input measurement signal
YF,B , the updated residual vector is computed as

rt = YF,B −ΘS̄t
F,B , (11)

where rt represents the updated residual vector at the t-th it-
eration, YF,B a sampled measurement signal in the feature
region, and Θ the measurement matrix. Based on (11) the
following termination condition is checked in each iteration∥∥rt

∥∥2 < εF , (12)

where ‖rt‖2 represents the l2-norm of the updated residual,
and εF the estimated error tolerance that can be adaptively
changed by the variance for minimizing the residual rt. As
a result, the recovered sparse signals preserve feature compo-
nents of measurement signals YF,B by using the optimal error
tolerance. In the recovery of measurement signals in the non-
feature region, the modified OMP repeats steps 2 and 3 using
the estimated error tolerance εN1 and εN2, (εN1 < εN2).
In step 3, that is the updating stage, we can obtain two dif-
ferently recovered sparse signals from one sampled measure-
ment signal of non-feature region YN,B using the relationship
of weighted error tolerance values. In step 4, the two recov-
ered sparse signals are fused for minimizing the artifacts as

SN,B =
1

2

∑
[SN1,B + SN2,B ] , (13)

where SN1,B and SN2,B represent recovered sparse signals
from measurement signals in the non-feature region YN,B us-
ing error tolerances εN1 and εN2, respectively. The recovered
sparse signals of each region are combined to generate the
DWT sub-bands, and the final noise-free image is obtained
using the inverse discrete wavelet transform (IDWT).

4. EXPERIMENTAL RESULT

For evaluating performance of the proposed method, we used
the 512x512 Lena image and compression ratio r/64=0.5
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with various amounts of noise. In the experiment we eval-
uated the performances of the standard OMP [6] and the
proposed methods in the sense of computation time, peak
signal-to-noise ratio (PSNR), and mean structural similarity
index (SSIM) [14]. For decomposing sparse signals, we used
the activity map tunning parameter of θ = {500, 300, 150} in
each DWT level, P ∈ {1, 2, 3}. For the initializing of error
tolerance, ε = 0.1 was used.

(a) (b) (c) (d)

Fig. 2. Experimental results: (a) original image, (b) simulated
degraded image with AWGN (15dB), (c) reconstructed image
using the OMP method, and (d) reconstructed image using the
proposed method.

As shown in Fig. 2, the proposed method produces an al-
most noise-free result while preserving sharp edges whereas
the original OMP method cannot perfectly remove noise
while producing blurry edges. Processing time of the pro-
posed method is approximately 10 times faster than original
OMP-based method with 15dB additive white Gaussian noise
(AWGN) noise. Table 2 summarizes the PSNR/SSIM values
and the computational times of the original OMP and the
proposed methods.

Table 2. Comparison of the standard OMP and the proposed
methods in sense of PSNR, MSSIM and processing time(Sec)

Fig. 3 shows additional experimental results which com-
pare the proposed method with the state-of-the art denoising
methods including SADCT [7] and BM3D [8]. As shown
in the experimental result, the proposed method provides
better noise removal performance than existing state-of-the-
art methods. In the eye region of the Mandril, conventional
denoising methods cannot preserve the feature components
whereas the proposed method can both remove noise and pre-
serve features. Table 3 summarizes the PSNR/SSIM values

(a) (b) (c) (d) (e)

Fig. 3. Experimental results: (a) original image, (b) simulated
degraded image with AWGN (15dB), (c) result of the SADCT
[7], (d) result of the BM3D [8] and (e) result of the proposed
method.

for the SADCT, BM3D and the proposed methods.

Table 3. The PSNR / SSIM values comparison of two differ-
ent method

5. CONCLUSION

In this paper, we presented a compressive sensing-based im-
age denoising algorithm using spatially adaptive image rep-
resentation and estimation of optimal error tolerance based
on sparse signal analysis. The proposed method performs a
block-based multiple compressive sampling after decompos-
ing the sparse signal into feature and non-feature regions us-
ing the activity map. As a result, the proposed method can
reconstruct the noise-free sparse signal by estimating the op-
timal error tolerance in the OMP step for minimizing both
recovery error and the number of iterations. Experimental re-
sults demonstrate that the proposed method can better remove
noise than existing state-of-the-art methods in terms of both
PSNR and SSIM. Processing time of the proposed method
is 5 to 10 times faster than original OMP-based method and
is suitable for various CS-based image system such as med-
ical imaging, remote sensing, and image enhancement and
restoration.
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