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ABSTRACT

We present a novel video stabilization method for cell phone cam-
eras. Our video stabilization is based on a pure 3D rotation motion
model, which can better capture the motion of the camera compared
with 2D models. 3D camera rotation can be reliably captured by a
gyroscope as commonly found on a smart phone or tablet. In this
paper we directly smooth the sequence of camera rotation matrices
for the video frames. Our contributions are (1) a smoothness metric
for a sequence of 3D rotation matrices based on geodesic distance
on a non-linear manifold, and (2) an efficient global motion smooth-
ing algorithm using manifold optimization. Our smoothness metric
better exploits the manifold structure of sequences of rotation matri-
ces. Experimental results show that our video stabilization method
outperforms state-of-the-art methods by generating more stable and
visually pleasant videos.

Index Terms— Video stabilization, manifold optimization, spe-
cial orthogonal group

1. INTRODUCTION

Hand-held video cameras, such as in smart phones and tablets, are
widely used to capture interesting or memorable moments conve-
niently at any time. Videos shot with hand-held cameras, however,
often suffer from annoying jitter due to camera shake. Video sta-
bilization aims at removing the unwanted jitter to generate visually
stable and pleasant videos. Generally video stabilization consists of
three major steps: (1) camera motion estimation, (2) camera motion
smoothing and (3) frame synthesis. In this paper we focus on the
second step.

We use a 3D rotational camera motion model for a calibrated
camera with a known intrinsic matrix. Compared to 2D affine or
projective motion models, 3D motion models can more accurately
reflect the real camera perspective projection, and thus give more
realistic motion smoothing and avoid image distortion in frame syn-
thesis. We ignore 3D translation of the camera because (1) the un-
wanted jitter in videos are primarily caused by camera rotation, and
(2) frame synthesis with 3D camera translation would need the depth
value at every pixel, which is impossible to obtain. To estimate the
3D camera rotation we use a gyroscope that is available in many
smart phones and tablets. Current gyroscopes in smart phones have
very high precision and can return more reliable 3D camera rotation
estimates compared to the estimates obtained from visual features in
the video sequence, especially when there are many moving objects
in the scene or it is difficult to track features points due to motion
blur and illumination changes.
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Under a 3D rotational model, camera motion for a video can be
considered as a sequence of 3D rotation matrices. We formulate mo-
tion smoothing with a regularization term indicating the smoothness
of the sequence of rotation matrices. Unlike traditional approaches,
we exploit the manifold structure of the sequence of rotation matri-
ces. The formulated problem is based on geodesic distance on the
Riemannian manifold. Previous methods only exploit the properties
on the manifold of the individual 3D rotation matrix SO(3) (Spe-
cial Orthogonal Group), so they can only smooth the camera motion
locally through low-pass filtering. We further consider the entire set
of sequences of rotation matrices as a Riemannian manifold, so that
we can model the motion smoothing problem globally and solve it
optimally. We propose to use Netwon’s algorithm on the manifold
structure, which has much better convergence property than normal
non-linear optimization algorithms in the Euclidean space. Experi-
mental results show that our motion smoothing method outperforms
state-of-the-art methods by generating more stable videos with less
distortion.

2. RELATED WORK

Camera motion has been commonly modeled using 2D affine or pro-
jective approaches. Using full 3D models including both rotation and
translation for calibrated cameras was first proposed in [1] and fur-
ther discussed in [2]. In both papers complicated approximations are
used in frame synthesis to handle the problem of missing depth val-
ues. In [3] and [4] pure 3D rotational models were shown to generate
high-quality results while only needing homography-based warping
in frame synthesis.

Gyroscopes and other inertial measurement sensors have been
widely used in robotic localization problems together with visual
measurements. However, they were not used in video stabilization
to replace the feature-based motion estimation until they became ac-
curate enough and widely available in cell phones recently[4, 5].

Motion smoothing methods using 2D models are based on Eu-
clidean distance. 2D camera motion can be smoothed using lo-
cal methods such as Gaussian-kernel low-pass filtering [6], global
methods such as L1-based regularization [7], and real-time meth-
ods such as Kalman filtering [8]. 3D rotation smoothing has been
implemented locally by low-pass filtering based on either Euclidean
distance [4] or geodesic distance on the manifold SO(3) [2, 5]. Al-
though SO(3) has additional applications in computer vision, med-
ical imaging and robotics [9], we have not found any previous work
considering the sequence of 3D rotation matrices as a whole. In this
paper we directly exploit the manifold structure of sequences of ro-
tation matrices so that we can formulate 3D rotation smoothing as a
regression problem.
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3. GEODESIC DISTANCE AND VIDEO STABILIZATION

All of the 3×3 rotation matrices constitute an embedded Riemannian
submanifold of the set of all 3×3 real matrices. In group theory this
manifold is known as special orthogonal group SO(3), in which
any element R satisfies the orthonormality constraint RRT = I.
A natural extension of Euclidean distance in Euclidean space to the
Riemannian manifold SO(3) is the geodesic distance

dg(Rm,Rn) = ||logm(R′
mRn)||F , (1)

where logm(·) is the matrix logarithm operator and || · ||F is the
Frobenius norm of a matrix. In fact, logm(R′

mRn) is a skew-
symmetric matrix representing a tangent vector in the tangent space
TRm

SO(3) that indicates the non-normalized direction from Rm to
Rn on SO(3). Usually we also write logm(R′

mRn) as logRm
Rn

and call it a logarithmic mapping. Inversely, given any tangent
vector ξ ∈ TRm

SO(3), we can define expRm
ξ = Rmexpm(ξ),

where expm(·) is the matrix exponential operator. Here, expRm
ξ

is called an exponential mapping and is used to move Rm along the
direction defined by ξ on SO(3).

For each video sequence, we can obtain a sequence of 3D rota-
tion matrices corresponding to all of the frames from the gyroscope
readings. Next we consider the sequence of 3D rotation matrices
as a whole and exploit the properties of the Riemannian manifold
constituted by these sequences.

Assume the sequence of 3D camera rotation for any video se-
quence with N frames can be represented by

x = [R1,R2, . . . ,RN ]T. (2)

All of the possible rotation matrix sequences with N elements con-
stitute a manifold MR with dimension 3N . Indeed, this manifold is
a Cartesian product of N SO(3) manifolds.

MR = SO(3) × SO(3) × . . .× SO(3). (3)

The manifold MR is also an embedded Riemannian submanifold of
3N × 3 real matrices (≃ R

9N ). Furthermore, for any x ∈ MR, the
tangent space TxMR at x can be represented by

[Ω1,Ω2, . . . ,ΩN ]T, (4)

where {Ωn} are real skew-symmetric matrices. In other words,
the tangent vectors and corresponding exponential (and logarithmic)
mapping are still separable as the elements in the manifold of ro-
tation matrix sequences. This fact makes the gradient-related opti-
mization algorithms easy to implement.

The goal of video stabilization is to remove visible jitter and
make the camera motion trajectory change smoothly. Given the man-
ifold structure of SO(3), it is natural to define the smoothness of a
rotation matrix sequence as the sum of geodesic distances between
adjacent rotation matrices. At the same time, we need to guarantee
that the smoothed camera motion trajectory does not deviate from
the original trajectory too much. As a result, we formulate the video
stabilization problem as

min
{Rnew

n
}

N
∑

n=1

1

2
d2g(R

old
n ,Rnew

n ) + α
N−1
∑

n=1

1

2
d2g(R

new
n ,Rnew

n+1), (5)

where {Rnew
n } is the sequence of stabilized rotation matrices,

{Rold
n } is the original sequence of rotation matrices, α is the

weighting parameter controlling the smoothness of the stabilized
trajectory. Note that although the objective function is derived based

on the geodesic distance between elements in SO(3), it is defined
on the rotation matrix sequence manifold MR. For brevity, we use
x ∈ MR to represent the rotation matrix sequence {Rnew

n } in form
of (2) and write the objective function to minimize as f(x).

4. SOLVING VIDEO STABILIZATION USING
GRADIENT-RELATED METHODS

The formulated problem in (5) is equivalent to an unconstrained
quadratic programming problem in Euclidean space. In Euclidean
space, such problems have closed-from solutions; however, on
non-linear manifolds we have to use iterative algorithms. Gradient-
related iterative algorithms are widely used in optimization for
manifolds as for Euclidean space [10]. For any element x in the
manifold of rotation matrix sequence MR, given any tangent vector
ξx ∈ TxMR, we can move x along the direction defined by ξx
using the exponential mapping expxξx. Note that given the sep-
arability property of the tangent vectors the exponential mapping
can also be implemented separately for different rotation matrices
in the sequence. If ξx is a descent direction related to the gradient
of the objective function at x, then we have the gradient-related
algorithm on the manifold MR. In fact, similar convergence results
of gradient-related algorithms has been extended from the Euclidean
space to general manifolds [10]. In this paper we investigate two
popular gradient-related descent directions: steepest gradient de-
scent and Newton’s method.

4.1. Steepest Gradient Descent

The descent direction of steepest gradient descent algorithm is sim-
ply the opposite of the gradient gradf(x). To compute the gradient
we first rewrite the objective function as

f(x) =
N
∑

n=1

gn(x) + α
N−1
∑

n=1

hn(x), (6)

where gn(x) = 1

2
d2g(R

old
n ,Rnew

n ) and hn(x) =
1

2
d2g(R

new
n ,Rnew

n+1).
Note that Rnew

n is one of the 3× 3 rotation matrix in x. For brevity
we define Rnew

n = Anx, where An is a 3× 3N matrix that is used
to extract Rnew

n from x. Similarlly we can map Rnew
n back to its

corresponding location in x by AT
nR

new
n .

If we consider 1

2
d2g(R

old
n ,Rnew

n ) as a function of Rnew
n , it has

been proven [11] that

grad
1

2
d2g(R

old
n ,Rnew

n ) = −logRnew
n

R
old
n . (7)

Given the separability feature of x, we can further obtain
{

grad gn(x) = −AT
nlogAnxR

old
n

grad hn(x) = −AT
nlogAnxAn+1x− AT

n+1logAn+1x
Anx.

(8)
Using linearity of the gradient, we can obtain

grad f(x) = −AT
1(logA1x

R
old
1 + logA1x

A2x)

−

N−1
∑

n=2

AT
i (logAnxR

old
n + logAnxAn+1x+ logAnxAn−1x)

−AT
N(logANxR

old
N + logANxAN−1x).

(9)

Equation (9) clearly shows the decomposition of grad f(x) into N
skew symmetric matrices corresponding to the N rotation matrices
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in x. Given the direction, we can use exponential mapping to update
x in each iteration with a proper step size to guarantee descent in
the value of objective function. In this paper we choose the step size
using the Armijo rule [12].

In Euclidean space the convergence rate of steepest gradient de-
scent is strongly affected by the eigenvalues of the Hessian matrix of
the objective function Hess f(x). This property also holds for non-
linear manifolds [10]. In fact we can check that the Hessian matrix
of the given objective function is ill-conditioned (the largest eigen-
value is much larger than the smallest eigenvalue). Therefore, the
steepest gradient descent method converges only sublinearly.

4.2. Newton’s Method

Newton’s method has been proven to converge locally quadratically
to the optimal solution for both Euclidean space and non-linear man-
ifolds. Newton’s method needs calculating the Hessian Hess f(x).
To calculate the Hessian on manifolds is a very difficult task. We
start to derive the Hessian of the proposed objective function from
the following lemma in [13].

Lemma 1. Consider the geodesic distance function φQ(P) =
d2g(P,Q), where P,Q ∈ SO(3). Let r = dg(P,Q) be the
geodesic distance. Let γ(t) : [0, r] → SO(3) denote the unit speed
geodesic connecting Q to P. ∀ξP, ηP ∈ TPSO(3), we have the
Hessian operator

Hess φQ(P)(ξP, ηP) = 〈ξ
‖
P, η

‖
P〉+

r

tan(r/2)
〈ξ⊥P , η⊥

P〉, (10)

where ‖ and ⊥ signs denote parallel and perpendicular orthogonal
components of the tangent vector with respect to γ̇(r). Here γ̇(r) ∈
TPSO(3) is the parrallel translation of γ̇(0) = logQP along the
geodesic from Q to P.

Given Lemma 1 and any orthonormal basis {Ei}i=1,2,3 of
TPSO(3) we can compute the matrix representation of the Hessian
operator by computing its result on every pair of basis tangent vec-
tors. Lemma 1 gives us a way to compute the Hessian matrix when
the objective function is the geodesic distance defined on SO(3).
In our proposed problem we need to find the Hessian for gn(x)
and hn(x), which are defined on the manifold MR of rotation
matrix sequences. Note that due to the separability feature of the
tangent vectors of MR, we can always find an orthonormal basis
{Ei

n}i=1,2,3;n=1,...,N of TxMR, where only AnE
i
n is non-zero and

it is equal to the basis vector Ei defined for TAnxSO(3). In other
words, the orthonormal basis of TxMR can be represented by N
subgroups and each subgroup corresponds to one particular rotation
matrix in the entire sequence. We propose the following theorem:

Theorem 1. Given the decomposed objective functions defined in
equation (6) and an orthonormal basis of TxMR in form of {Ei

n},
we have

{

Hess gn(x)(E
i
n, E

j
n) = Hess φRold

n
(Anx)(E

i, Ej)

Hess gn(x)(E
i
m, Ej

l ) = 0, if m 6= n or l 6= n
(11)



























Hess hn(x)(E
i
n, E

j
n) = Hess φAn+1x(Anx)(E

i, Ej)

Hess hn(x)(E
i
n+1, E

j
n+1) = Hess φAnx(An+1x)(E

i, Ej)

Hess hn(x)(E
i
n, E

j
n+1) = −Hess φAn+1x(Anx)(E

i, Ej)

Hess hn(x)(E
i
n+1, E

j
n) = −Hess φAnx(An+1x)(E

i, Ej)

Hess hn(x)(E
i
m, Ej

l ) = 0, if m 6= n, n+ 1 or l 6= n, n+ 1
(12)

The computation on the right hand side of the equations has been
defined in Lemma 1.
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Fig. 1. Convergence of the gradient-related algorithms in video sta-
bilization.

Due to paper length constraints, we only sketch the proof here.
The proof is established by exploiting the independence among dif-
ferent components in the rotation matrix sequence and the definition
of the Hessian operator based on Levi-Civita connection [14]. Using
Theorem 1 and linearity of the Hessian we can obtain a 3N × 3N
matrix representation H of Hess f(x) for a given orthonormal ba-
sis {Ei

n}. To compute the direction in Newton’s method, we first
compute grad f(x) and then represent it as a vector v under the or-
thonormal basis {Ei

n}. Then we just need to solve the linear system
H · u = −v and the direction is represented by the vector u under
the same basis. Given the update direction we still use the Armijo
rule to select the step size.

5. EXPERIMENTAL RESULTS

We first compare the convergence rate of steepest gradient descent
method and Newton’s method in solving the formulated problem. In
the experiment we try to smooth a sequence of 478 3D rotation ma-
trices (478 frames) with α = 1000. Figure 1 shows the values of
the objective function in 10 iterations. Newton’s method success-
fully converges in just 2 iterations. Each iteration of the Newton’s
method takes 2.93 seconds on a 2.3GHz Intel i5 processor machine
with MATLAB implementation (without parallel processing). We
find that the number of iterations needed before convergence is not
affected by the total number of frames in the video, so the conve-
gence time increases gracefully (linearly) with the increase in the
number of frames.

We use the proposed motion smoothing method in video stabi-
lization and compare the results with two state-of-the-art methods:
(1) L1 regularization on 2D affine models [7] (used in the YouTube
video editor) and (2) Low-pass filtering on 3D rotation model us-
ing Hamming window [5]. The 2D motion is estimated from tracked
feature points, while the 3D rotations is directly obtained by integrat-
ing the gyroscope readings. None of the methods is full-frame video
stabilization so we need to crop the stabilized outputs. The original
frame size of the videos is 720 × 480 and the stabilized video from
the YouTube video editor [7] has been automatically cropped into
540 × 360. So in comparison we use the same size to crop the re-
sults of our method and our implementation of [5] to make the frame
size consistent. However, we need to mention that our method can
generate larger-size cropped videos without unknown boundaries. In
the experiments we fix the smoothness parameter as α = 100.

First, we test different methods on a video shot by a walking for-
ward person. In Figure 2 we detect Harris corner points in a certain
frame and track them for ten frames. We show the starting frame
with yellow curves indicating the tracks of the feature points in the
following 10 frames. For a stabilized video the tracks should be
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Fig. 2. Stabilization comparison for a video shot by a walking for-
ward person.

(a) Original video (b) Result of [5]

(c) Result of [7] (d) Our result

very short since the camera is always facing forward in spite of jit-
ter caused by hand shake. The 2D L1-regularization method [7] can
smooth and shorten the tracks compared to the original video, but the
feature points are still moving up and down. 3D local low-pass fil-
tering method [5] and our algorithm can keep the feature points very
steady and our result is slightly better than [5]. Note that we detect
the feature points independently in the four videos so the location
and number of the feature points are different.

Next we take a test on a video shot while panning the camera.
Video stabilization should only remove the unwanted jitter while
keeping the panning motion of the camera. In Figure 3 we do the
same kind of test as in Figure 2. All of the three methods success-
fully smooth the tracks of the feature points. The tracks in the result
of [7] are not as straight as those in the result of [5] and our result if
we zoom in the results (notice the two ends of the tracks).

The stabilization results are best viewed in video form. Please
see the video examples on the Web page of our paper [15]. In the lo-
cal comparison (10 frame duration) in Figure 2 and Figure 3 the local
smoothing method [5] performs similarly to our method. However,
our method works better globally. In addition, the weighted average
computation on rotation matrices based on geodesic distance cannot
be solved analytically and needs iterative algorithms. So the local
low-pass filtering method in [5] needs to run iterative algorithms for
each frame and thus takes longer than our method, especially when
the Hamming window size is large. Some other works tried to solve
the rotation averaging approximately [2] or just based on Euclidean
distance to increase the processing speed but with sacrificing stabi-
lization quality. In the two video examples features are easy to track
since there is very little motion blur in the frames. However, when
the videos are shot in low light condition the visual-based motion
estimation used in [7] will fail sometimes while the 3D rotational
video stabilization using gyroscopes is not affected.

Fig. 3. Stabilization comparison for a video shot while panning the
camera.

(a) Original video (b) Result of [5]

(c) Result of [7] (d) Our result

6. CONCLUSIONS

In this paper we propose a novel video stabilization method using a
3D rotational camera motion model. We exploit the manifold struc-
ture of not only the 3D rotation matrices, but also the sequences of
3D rotation matrices. We formulate the global motion smoothing as
a regularization problem based on geodesic distance and present an
efficient Newton’s algorithm to solve the problem on the proposed
manifold. The 3D camera rotation for each frame is obtained reli-
ably using gyroscopes that are equipped in most smart phones and
tablets. We have demonstrated in experiments that our algorithm
is very fast and can generate better video stabilization results than
state-of-the-art methods.
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[5] G. Hanning, N. Forslöw, P.-E. Forssén, E. Ringaby,
D. Törnqvist, and J. Callmer, “Stabilizing cell phone video
using inertial measurement sensors,” in Proc. IEEE Intl. Work-
shop on Mobile Vision, Nov. 2011.

[6] Y. Matsushita, E. Ofek, W. Ge, X. Tang, and H.-Y. Shum,
“Full-frame video stabilization with motion inpainting,” IEEE

2496



Trans. on Pattern Analysis and Machine Intelligence, vol. 28,
July 2006.

[7] M. Grundmann, V. Kwatra, and Ifran Essa, “Auto-directed
video stabilization with robust L1 optimal camera paths,” in
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion, June 2011.

[8] A. Litvin, J. Konrad, and W. Karl, “Probabilistic video sta-
bilization using Kalman filtering and mosaicking,” Proc.
IS&T/SPIE Symposium on Electronic Imaging, Image and
Video Comm.and Proc., pp. 663–674, 2003.

[9] V. Govindu, “Lie-algebraic avearaging for globally consistent
motion estimation,” in Proc. IEEE Conf. on Computer Vision
and Pattern Recognition, June 2004.

[10] P.-A. Absil, R. Mahony, and R. Sepulchrer, Optimization Algo-
rithm on Matrix Manifolds, Princeton University Press, 2008.

[11] H. Karcher, “Riemannian center of mass and mollifier smooth-
ing,” Comm. Pure Appl. Math, vol. 30, pp. 509–541, 1977.

[12] J. Nocedal and S.J. Wright, Numerical Optimization, Springer,
1999.

[13] R. Ferreira, J. Xavier, J.P. Costeira, and V. Barroso, “Newton
method for Riemannian centroid computation in naturally re-
ductive homogeneous spaces,” in Proc. IEEE Intl. Conference
on Acoustics, Speech and Signal Processing, May 2006.

[14] J. Gallier, Notes on Differential Geometry and Lie Groups,
University of Pennsylvannia, 2012.

[15] C. Jia and B. L. Evans, “Video demonstrations for
3D rotational video stabilization using manifold opti-
mization,” http://www.ece.utexas.edu/˜bevans/
papers/2013/stabilization/.

2497


