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ABSTRACT

In this paper, we consider the problem of removing jaggy ar-
tifacts from images. We consider the kernel regression frame-
work and propose a reduced-rank quadratic adaptive method
that adapts to the local gradient direction. The proposed tech-
nique is effective in shrinking isophote fluctuations, and the
result is smooth edges. We observe that it is critical to dif-
ferentiate jaggy artifacts from texture, junctions and corners,
so that meaningful image structure is preserved. Here, we
demonstrate that the spectrum of the local covariance matrix
of gradients, also known as the structure tensor, is well suited
for differentiation of jaggy artifacts from image structure, and
we incorporate this into the kernel regression framework. Re-
sults show the efficacy of the approach. Namely, that the
method is effective in reducing jaggy artifacts without blur-
ring meaningful image structure.

Index Terms— image, video upscaling, jagged edge re-
duction, kernel regression.

1. INTRODUCTION

Jaggy artifacts describe a “stair case” or aliasing artifact that
appears along straight lines in an image. For synthetic con-
tent, the artifacts may be introduced by poor rendering al-
gorithms. Alternatively, for all content, jaggies may be in-
troduced during resolution conversion. For example, jaggies
can be created in the down-sampling process with insufficient
pre-filtering. Jaggy artifacts can also be introduced during the
up-sampling process, typically when filters with small sup-
port are used due to complexity restrictions. No matter the
cause though, jaggies are visually noticeable and associated
with poor quality somewhere within the acquisition to display
chain.

A direct approach to reduce jaggy artifacts is to employ
improved rendering, down-sampling or upscaling technolo-
gies within a system. For example, anti-aliasing algorithms
can be employed during the rendering process to reduce the
contrast at the edge and attenuate the jaggy artifact [1]. Al-
ternatively, improved pre-filtering can be employed prior to
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down sampling [2]. Finally, edge adaptive (directional) up-
scaling methods can provide smooth renditions of edges and
prevent the creation of jaggy artifacts [3].

Unfortunately, our scenario of interest does not allow the
use of the methods above. Here, we are concerned with a
display application, where the display receives image content
already containing jaggy artifacts. The creation of these ar-
tifacts is due to design decisions in other components of the
capture to display chain and not under the control of the dis-
play algorithm design. Given this scenario, the goal of our
work is to identify and remove jaggy artifacts in order to pro-
vide the ultimate image quality to the viewer. This requires
attenuation of the artifact without degrading meaningful im-
age structure.

In the rest of the paper, we describe a novel approach that
incorporates the structure tensor within a kernel regression
framework [4]. We show the method to be well suited for
both jaggy artifact reduction and texture preservation. The
paper is organized as follows: In Section 1.1, we discuss prior
work on the problem of jaggy artifact reduction. In Section 2,
we review kernel regression and describe the recent advances
in this field. The proposed method is explained in Section 3,
which focuses on adopting kernel regression for smoothing
of jagged edges. In Section 4, we describe efficient methods
for computing kernels and explain the setting under which
experiments were conducted. Finally, we conclude this work
in Section 5.

1.1. Prior Work

Generally, the task of jagged edge reduction falls under the
broad class of video enhancement techniques; particularly,
edge enhancement. Our purpose here is not to enhance the
cross-sectional gradient attributes of edges; rather, edges are
enhanced along their level curves to produce smooth and con-
tinuous edges. There are a few approaches that specifically
target the same goal and are reviewed in this section.

A large portion of methods that particularly target the re-
duction of jaggies belong to the PDE-based fields of level set
motion [6] and anisotropic diffusion [7]. These methods it-
eratively reduce the curvature of level curves using the gen-
eral propagation of fronts and anisotropic diffusion equations.
However, in their basic form, they can result in loss of texture
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without proper regularization and stopping criterions.

More optimized approaches to level set motion and diffu-
sion are proposed through the framework of bounded varia-
tion optimization [8, 9]. Similar to anisotropic diffusion, most
bounded variation methods employ step-wise and iterative
optimization with convergence guarantees. Total variation
minimization has been extensively used for image restoration
and reconstruction. However, it often results in staircasing
artifacts [9].

Another class of approaches stem from the kernel regres-
sion framework. Specifically, normalized convolution [5] and
steering kernel regression [4] are premiers of this field and
have been utilized extensively in the past few years. In these
approaches, the regression kernel is adapted to the image and
is proved to be robust with respect to noise. In this paper, we
intend to build a new framework upon adaptive kernel regres-
sion with the specific goal of jagged edge reduction. The main
challenge of this task is preserving the sharpness of edges,
texture and critical points such as junctions and corners. We
propose a rank-reduced regression that adapts to the local gra-
dient attributes that are computed using robust measures of
structure.

2. KERNEL SMOOTHING

In this section, we describe basic concepts from regression-
based smoothing. In quadratic local polynomial regression,
the pixel values in the neighborhood of the pixel (i, ), de-
fined by the local window, are estimated as follows:
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where e, denotes the estimation error associated with quadratic
regression. Define 5;; = [b1,...,bs], the vector of parame-
ters and fgij (', ') the estimation of f(i’, j') using f3;;.

The shape and size of regression windows play an im-
portant role in piecewise regression of images. Regression
windows can either have clear boundaries or decay smoothly
according to a function known as the kernel. A popular choice
of kernel function is the Gaussian function with a diagonal co-
variance matrix o2I. Furthermore, it is possible to tailor the
kernel to the structure of the underlying image, as we describe
later in this section.

Kernel regression is performed using weighted least
squares estimation as it is expressed below:
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where K is the window kernel centered at (3, j).

It is desired that the kernel function decays quickly across
the edges, to preserve the sharpness of edges, and smoothly
along the edges to create smooth and visually pleasing edges.

Also, it is desired that the kernel support vanishes when tex-
ture is detected to avoid the difficulties in dealing with texture.
A well known approach to adaptation of kernels is through
structure tensor field. For images, structure tensor at pixel lo-
cation (4, 7) is the 2 x 2 weighted covariance matrix of local
gradients in horizontal and vertical directions:
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f« and f, are gradients in horizontal and vertical directions
and w;; (k, 1) is usually a bounded Gaussian function centered
at (4, 7). A critical property of S;; is its positive-definiteness
except at regions with a fixed gradient, like flat surfaces.
Such singular cases are excluded from further processing
since edges are the main target of this work.

Well known methods such as adaptive normalized con-
volution [5] and steering kernel regression [4] employ the
structure tensor field to extract piecewise linear structures like
edges. This information is utilized in a kernel function of the
following form:
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which is basically a Gaussian function with p = (4, ) and
Y71 =5,;/a;j. a;j is a scalar scaling parameter that is used
to further tune the kernel for our specific application as it is
explained in the following section.
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3. MODIFYING KERNEL SMOOTHING FOR
JAGGED EDGE REDUCTION

In this paper, kernel smoothing is utilized to reduce jagged-
ness of edges. This is accomplished by reducing the excessive
curvature of the edge’s level curves or isophotes. The amount
of smoothing that is desired can be achieved by adjusting
the order of the polynomial regression. However, due to the
bias-variance trade-off, desired suppression of jaggies can-
not be attained without sacrificing edge sharpness. To over-
come this issue, we propose an adaptive regression method
that consists of quadratic regression across edges (isophotes)
and zero-order regression along edges (isophotes). The piece-
wise orientation of isophotes can be reliably extracted from
the structure tensor that is computed for the regression ker-
nel. After the orientation of the gradient (normal to isophote)
at pixel (4, j) is computed as (f, (i, ), fy(i7j)), the new re-
gression can be written as:
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The regression of (5) is basically a one-dimensional quadratic
regression in the direction of the gradient vector. It is not
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hard to show that the regression of (5) forces the isophote
curvature [6] at pixel (i,j) towards zero. Meanwhile, large-
scale curves, related to the shape of objects, are preserved
since regression coefficients are computed locally through a
kernel that adapts to the underlying structure. In Figs. 1 and
2 we have plotted the independent variables, also known as
covariates, associated with regression problems of (1) and (5)
on 2-D image grids.

-

Fig. 1. From left to right: regression covariates i’ — 4, j' — 7,
(i’ —4)%, (j' — j)? and (i — i)(j' — j) corresponding to (1).

Fig. 2. Regression covariates of (5) that adapt to the structure.

Note that covariates in Fig. 2 that adapt to the structure of
edges preserve sharpness of edges and at the same time reduce
variations along the edges. The non-adaptive covariates of
Fig. 1 allow large variations both across and along the edges
that is the main reason for ineffectiveness of these filters for
smoothing jaggies.

3.1. Selection of the scaling parameter

Complexity of natural textures cannot be modeled by simple
linear functions. Hence, in this work, we avoid smoothing of
fine texture, corners and junctions by reducing the size of re-
gression window over such structures. The scaling parameter
a;; in (4), controls the width of the Gaussian kernel for each
pixel and is computed using the measure of coherency [10]:
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where A and \; are respectively the larger and smaller eigen-
values of S;;, the structure tensor. A; corresponds to the vari-
ance of pixel values in the direction of the gradient and A,
is the variance in the normal direction. Hence, coherency
measures the normalized anisotropy of neighborhood which
represents the edge confidence. Near zero coherency cor-
responds to the absence of a single dominant direction and
can be associated with smooth areas, texture, corners or edge
junctions. Coherency values close to one correspond to strict
directionality and can be confidently associated with edges
that are the subject of this paper.

An important factor in the visibility and energy of edges
is the presence of contrast that is not a factor in the definition
of normalized coherency. Contrast can be incorporated by
inserting the variance term /A1 A3 into the definition of a;:

(M — A2)
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To summarize, o;; measures the degree of anisotropy and vi-
sual appeal of a local region.

4. RESULTS

The algorithmic implementation of proposed method is car-
ried out in two stages. In the first stage, the structure tensor
field and its derivatives such as its eigenvectors and eigen-
values are computed. In the second stage least-square based
kernel regression is applied to smooth jagged edges. Before
showing the results, we describe an efficient method for com-
putation of structure tensor field.

4.1. Fast calculation of the structure tensor field

First, gradients are computed. In order to have a robust esti-
mation of gradients, the Gaussian derivative mask was used.
The structure tensor field and its eigenvalue decomposition
are obtained from f, and f, planes using the following oper-
ations:

Sll :G*[fofx]vSQQZG*[nyfy}
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Here, S;; denotes the plane of S;; values for all pixels, G
is a finite support Gaussian filter with tunable width, * and
® respectively denote the convolution and the element-wise
multiplication operators. This formulation presents a more
efficient per-frame basis for computing the structure tensor for
pixels. Before the regression is performed, eigenvalues and
eigenvectors are computed using basic algebraic expressions.

4.2. Experiment setting

To simulate jagged edges, we first downscale and then up-
scale a set of real-world videos using classic upscaling meth-
ods such as bilinear interpolator. Bilinear interpolator was
chosen to simulate the worst case scenario. Also the down-
sampling is done without anti-aliased prefiltering to produce
significant jaggies for easier inspection.

A comprehensive comparison of our proposed method
with the published works in this field is clearly out of the
scope of this paper. However, it is reasonable to compare
our method with the state-of-the-art in the kernel smooth-
ing domain, namely the Steering Kernel Regression (SKR)
[4] which has attracted much attention recently. For a fair
comparison of SKR and our method, we have tuned the two
methods to similar levels of smoothing.

4.3. Simulation Results

For demonstration, we use a frame from each of the two se-
quences. The first sequence is a recorded basketball match
that contains a clear combination of edges and texture on the
ground and audience areas plus it has compression artifacts
that further increase the amount of edge jaggedness. The sec-
ond one is a high-definition video containing complex pat-
terns of plantal bodies that overlap and do not conform to
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Fig. 3. First row: input images (downsampled and upscaled using bilinear interpolator). Second row: SKR with quadratic
regression. Third row: SKR with zero-order regression. Fourth row: The proposed kernel regression.

most idealistic models and therefore, is of our interest in this
work. Cropped and zoomed patches from these videos are
shown in the first row of Fig. 3 after they were downsampled
and upscaled as explained in the previous subsection.

The result of applying SKR is shown in Fig. 3, the second
row. SKR is proved to work well for reduction of noise and
blocking artifacts. However, direct application of SKR, as can
be seen in the figure, results in texture blur while jaggies are
moderately corrected. We have marked several areas in Fig.
3 where the original SKR either fails to reduce the jagged-
ness or blurs the texture. Also, we implemented SKR with
zero-order regression to test the maximum smoothing power
of SKR in correcting significant jaggies that is shown in the
third row of Fig. 3.

The results of the proposed kernel smoothing is presented
in the fourth row of Fig. 3. We note to the two advantages
of these results: a) jagged edges have become smooth with-
out significant loss of sharpness and b) textures, corners and
junctions are mostly preserved. The marked regions in Fig. 3
visualize and ascertain these points. The reduction in jaggies
comes as a natural consequence of the proposed reduced-rank

regression. The preservation of texture is due to the contrac-
tion of window kernel over isotropic regions and is directly
related to the definition of oy;; parameter in Section 3.1. To
conclude, the new kernel regression improves smoothing of
jaggies, even compared to zero-order SKR, and introduces
less blurring which alleviates the need for post-deblurring.

We implemented the proposed method on an Intel Core 2
Due CPU 2.93GHz using the Matlab platform. The average
processing time for each frame of the basketball HD sequence
was measured around 7.2 seconds.

5. CONCLUSION

Recently, it has been shown that regression windows can be
well adapted to the underlying structure using the notion of
structure tensor field. However, there has not been enough
work on the selection of different regression functions along
with the adaptive kernel based smoothing. In this work, we
proposed a novel reduced-rank quadratic estimation that re-
duces variance associated with isophote oscillations while
preserving texture. The proposed method leads to smooth
edges with sharp cross-section gradient profiles.
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