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Abstract-In this study, a local contrast enhancement method, 
namely Parametric-Oriented Histogram Equalization (POHE), is 
proposed to effectively yield enhanced results. In general, the 
grayscale distribution of a specific region in an image can be 
modeled with a kernel function such as the Gaussian, and thus the 
corresponding estimated cumulative distribution function (cdf) can 
be considered as the transformation function for contrast 
enhancement. The required parameters, however, still need to 
access all of the pixels in the corresponding region, and thus 
consume a huge amount of computations. To cope with this, the 
concept of integral image is adopted to effectively derive the 
required parameters. In the experimental results, former 
well-known speed-oriented methods are adopted for comparison, 
and the results demonstrate that the proposed methods can provide 
high practical value for biometric and tracking/detection these 
active issues who desire high efficiency. 
Keywords: Image enhancement, histogram equalization, contrast 
enhancement, integral image, parametric-oriented histogram 
equalization.  

1. INTRODUCTION 
Nowadays, image enhancement [1] plays an important role in 
vision-wise applications, for instance the enhancement of 
brightness or contrast. These methods are widely-used for 
providing a better visual perception for Human Visual System 
(HVS) or higher discernible capability for a signal for rear-end 
analysis. Among these, the latter issue attracts more attentions 
because of the rises of some popular fields, such as the medical 
imaging and pattern recognition. The contrast enhancement is the 
most popular image enhancement technique throughout these 
areas. In general, these methods can be roughly grouped into 
global and local categories according to their purposes and 
considerations. For the global one, the coordination and the 
balance of the entire enhanced image should be maintained, and 
normally the issue of noise influence is also considered since the 
prospective viewers are HVS. Conversely, the local schemes 
mostly focus on the stability of the local luminance as well as 
mining more details from those images. In addition, since the 
overexpressed information is normally not intuitive for viewers, 
these methods tend to be utilized in signal analysis related topics, 
such as object tracking or detection.  
 The Global Histogram Equalization (GHE) [1] is the most 
representative global way of contrast enhancement, and typically 
the target expectation is to shape images having uniform 
distribution of pixel values. Firstly, this method collects the 
grayscale histogram (called probability density function (pdf)) of 
an entire image, and then adopts the corresponding cumulative 
distribution function (cdf) as the transformation function. This 

method can be implemented easily and offers high processing 
efficiency, yet it lacks good brightness preservation and visually 
pleasurable perception. To improve these issues, some former 
studies have proposed more effective algorithms/thoughts to reach 
better performance [2]-[8]. So far the most widely acceptable way 
to cope with the above issues is to divide this entire histogram into 
multiple sub-histograms, and enhance each of them. For instance, 
the Bi-Histogram Equalization (BBHE) [2] and Dualistic 
Sub-Image Histogram Equalization (DSIHE) [3] separated the 
histogram into two by the mean and the median value of the given 
histogram. In addition, the Minimum Mean Brightness Error 
Bi-Histogram Equalization (MMBEBHE) [4] has the same 
number of sub-histograms, yet it sacrificed processing efficiency 
for finding a more appropriate location for histogram division. 
These methods provide two sub-histograms, and also limit the 
room of brightness preservation. Thus, some methods such as 
Recursive Mean Separate Histogram Equalization (RMSHE) [5] 
and Recursive Sub-Image Histogram Equalization (RSIHE) [6] 
extend the essences of BBHE and DSIHE, respectively, for 
yielding better performance. Moreover, the Multiple Histogram 
Equalization (MHE) [7] and Celik-Tjahjadi's method [8] also 
achieved an improvement through the same concept. In recent 
years, the adoption of wavelet transform comes to another popular 
way for global contrast enhancement [9]-[11]. Normally, the 
wavelet coefficients are modified individually to yield the 
expected effect, while an independent way which thresholds these 
coefficients is also usually utilized for easing noises. To further 
improve the visual quality, the method in [9] decomposed the 
high-frequency bands by the Haar transform to extract more image 
details for enhancement. In addition, to obtain a higher accuracy of 
coefficient representation, the method in [10] offered multiple 
available wavelet transforms during process. Although these 
wavelet-based methods are able to offer good enhanced results and 
noise suppression simultaneously, the required transformation and 
its inverse process also raise the entire computations (4.9 seconds 
were needed for a frame of size 256x384 when the Pentium 4 
2.4GHz CPU was adopted). Hence, these methods are widely-used 
in medical imaging which has less demand on processing 
efficiency.  
 Conversely, to give more discernible details of images, the 
regional enhancement perspective is considered for each pixel in 
the local methods, while the computation requirement are also 
raised more intuitively. For instance, the region of size 21x21 was 
supposed to be used in Sakellaropoulos et al.'s wavelet-based 
method [12], and thus a relatively higher computational 
complexity is also accompanied (122 seconds are needed for a 
frame of size 1400x2300 when the Pentium 4 1.5GHz CPU and 
1GB RAM were used). Meanwhile, respecting to the GHE, the 
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Local HE (LHE) the local form of the HE technique also induces 
an unacceptable complexity since each pixel has a specific 
transformation function. For some applications, e.g., intelligent 
surveillance system, biometric, tracking, and detection, due to the 
processing efficiency is a rather crucial factor, some specific 
studies toward computation simplification are motivated. For 
instance, Stark [13] proposed an adaptive contrast enhancement 
method to leave a room for further adjustment to meet different 
applications and the corresponding preferred effect. In this method, 
the concept of the signed power-law and the local-mean 
replacement method were adopted to generate the required 
transformation functions, whereas two adjustable parameters, the 
cumulation function power and the proportion of local-mean, were 
retained. Moreover, the Yu-Bajaj’s method [14] employed the 
isotropic and anisotropic propagations to yield the required 
maximum, minimum, and average maps for contrast enhancement. 
Since the propagation information replaces the role of the 
Gaussian filtering [15], the computational complexity is also 
reduced. Kim et al.’s Partially Overlapped Sub-block Histogram 
Equalization (POSHE) [16] utilized the concept of block-wise 
processing to replace the former pixel-wise concept. In this 
method, the pixels in a block use an identical group of cdfs 
(involving the neighboring blocks, and the weights of each cdf 
according to a low-pass filter) to obtain the shared transformation 
function, and the processing efficiency is further increased. Since 
this method consumed lots of computations on the filtering, the 
method called Cascaded Multistep Binomial Filtering Histogram 
Equalization (CMBFHE) [17] is proposed to utilize a binomial 
filter with fewer computations to replace the role of the formerly 
used low-pass filter. Although all of the above improved local 
methods offer well contrast enhancement and more discernible 
details, the processing efficiency still has quite a big gap to reach 
the real-time requirement of speed-oriented applications. In 
particular, when a bigger neighborhood size is considered (the 
region size to enhance a pixel), the processing efficiency is 
normally reduced exponentially.  
 In this study, the Parametric-Oriented Histogram 
Equalization (POHE) is proposed to meet the requirements of 
locally contrast-enhanced results, and which simply requires 
extremely low computations. In this method, the concept of the 
integral image is employed to enable these functions. With this 
strategy, the processing efficiency does not affected by the size of 
the considered neighborhood.  
2. PARAMETRIC-ORIENTED HISTOGRAM EQUALIZATION (POHE) 
In general, although the traditional LHE [1] provides better 
descriptions on the details of a given image compared to the GHE, 
it requires much more computational time to construct the 
transformation function (cdf) for each pixel. To reduce the high 
required payload, the proposed POHE attempts to use an estimated 
model to yield the transformation function. As a result, the 
computations can be significantly reduced with this strategy. 
 
2.1. Traditional LHE 
To have a better understanding of the proposed POHE, the 
traditional LHE is briefly introduced in this subsection. In the 
LHE, each pixel has an independent transformation function. The 
relationship between an input image and the enhanced image can 
be formulated below,  
𝑦𝑦𝑖𝑖 ,𝑗𝑗 = 𝑓𝑓�𝑥𝑥𝑖𝑖 ,𝑗𝑗 �, where 𝑥𝑥𝑖𝑖 ,𝑗𝑗 ∈ ℤ and 𝑦𝑦𝑖𝑖 ,𝑗𝑗 ∈ ℤ,               (1) 
where 𝑥𝑥𝑖𝑖 ,𝑗𝑗  and 𝑦𝑦𝑖𝑖 ,𝑗𝑗  denote the given grayscale value and the 
corresponding contrast enhanced grayscale value, respectively. 

This transformation function is obtained by considering the 
grayscales of its neighborhood. The traditional HE (no matter the 
global or local HE) supposes that a uniform grayscale distribution 
is able to provide the best contrast, and thus the cdf of the 
grayscale distribution is considered as the transformation function 
as below,  
𝑝𝑝(𝑔𝑔) = 1

�R𝑖𝑖 ,𝑗𝑗 �
∑ 𝛿𝛿�𝑥𝑥𝑖𝑖+𝑚𝑚 ,𝑗𝑗+𝑛𝑛 − 𝑔𝑔�(𝑚𝑚 ,𝑛𝑛)∈R𝑖𝑖 ,𝑗𝑗 , where  𝑔𝑔 ∈ [0, 𝐿𝐿],   (2) 

𝑐𝑐(𝑔𝑔) = ∑ 𝑝𝑝(𝑖𝑖)𝑔𝑔
𝑖𝑖=0 ,                                    (3) 

where 𝑔𝑔 denotes the possible values (in an 8-bit digital image, 
𝐿𝐿 = 28 − 1 = 255 ); R𝑖𝑖 ,𝑗𝑗 = �𝑥𝑥𝑖𝑖+𝑚𝑚 ,𝑗𝑗+𝑛𝑛 ||𝑚𝑚| ≤ �𝑀𝑀

2
� , |𝑛𝑛| ≤ �𝑁𝑁

2
��  of 

size MxN denotes the neighborhood (referred to as a block in this 
paper) centered at coordinate (i, j); �R𝑖𝑖 ,𝑗𝑗 � denotes the cardinality 
of R𝑖𝑖 ,𝑗𝑗 ; 2 ∤ 𝑀𝑀 and 2 ∤ 𝑁𝑁; 𝑝𝑝(∙) and 𝑐𝑐(∙) denote the pdf and cdf, 
respectively. Subsequently, the transform function can be obtained 
through the stretching as below,  
𝑓𝑓�𝑥𝑥𝑖𝑖 ,𝑗𝑗 � = 𝐿𝐿 × 𝑐𝑐�𝑥𝑥𝑖𝑖 ,𝑗𝑗 �.                                 (4) 
 
2.2. Concept description 
Most of the time consumptions in the traditional LHE can be 
separated into two parts: 1) The pdf construction which has to 
access the entire R𝑖𝑖 ,𝑗𝑗 , and 2) the construction of cdf for each 
grayscale (as represented in Eqs. 2 and 3, respectively). In this 
work, these two issues are separately discussed and simplified in 
terms of computational complexity conceptually.  
 Considering a common viewpoint that the grayscale 
distributions of natural images are in Gaussian, in particular the 
well-exposed images normally confirm this observation. This 
indicates that few statistical parameters can be used for estimating 
an approximate distribution from an image of interest. The cdf of 
the Gaussian distribution has an error function according to its 
definition as defined below,  
erf(𝑥𝑥) = 2

√𝜋𝜋
∫ 𝑒𝑒−𝑡𝑡2𝑑𝑑𝑡𝑡𝑥𝑥

0 , where 𝑥𝑥 ∈ ℝ.                    (5) 
To simplify this formula, the corresponding approximation [18] 
can be rewritten as below,  
erf(𝑥𝑥) ≈ 1 − �∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖5

𝑖𝑖=1 �𝑒𝑒−𝑥𝑥2 , where 𝑡𝑡 = 1
1+𝑝𝑝𝑥𝑥

 and 𝑥𝑥 ≥ 0,  (6) 
where 𝑝𝑝 =0.3275911, 𝑎𝑎1 =0.254829592, 𝑎𝑎2 =-0.284496736, 
𝑎𝑎3 =1.421413741, 𝑎𝑎4 =-1.453152027, and a5 =1.061405429; for 
negative 𝑥𝑥 , erf(−𝑥𝑥) = − erf(𝑥𝑥) . Thus the transformation 
function for the LHE can be obtained through  

𝑐𝑐𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝑎𝑎𝑛𝑛 �𝑥𝑥𝑖𝑖 ,𝑗𝑗 � = 1
2
�1 + erf(

𝑥𝑥𝑖𝑖 ,𝑗𝑗−𝜇𝜇𝑖𝑖,𝑗𝑗
𝑒𝑒𝐺𝐺𝑡𝑡

√2𝜎𝜎
)�,                   (7) 

where 
𝜇𝜇𝑖𝑖 ,𝑗𝑗𝑒𝑒𝐺𝐺𝑡𝑡 = 1

�R𝑖𝑖 ,𝑗𝑗 �
∑ 𝑥𝑥𝑖𝑖+𝑚𝑚 ,𝑗𝑗+𝑛𝑛(𝑚𝑚 ,𝑛𝑛)∈R𝑖𝑖 ,𝑗𝑗 ,                         (8) 

𝜎𝜎 = � 1
�R𝑖𝑖,𝑗𝑗 �

∑ �𝑥𝑥𝑖𝑖+𝑚𝑚 ,𝑗𝑗+𝑛𝑛 − 𝜇𝜇𝑖𝑖 ,𝑗𝑗𝑒𝑒𝐺𝐺𝑡𝑡 �
2

(𝑚𝑚 ,𝑛𝑛)∈R𝑖𝑖 ,𝑗𝑗 .                  (9) 

The superscript “est” represents that the labeled variable is 
obtained through estimation. By this distributive assumption, the 
required cdf construction intuitively does not have to be calculated. 
Figure 1 shows a simple visual comparison which involves the 
traditional global/local HEs, and the parametric estimated 
approach using Gaussian kernel function. It is clear that the 
proposed simple method is still able to provide high local contrast, 
in particular the words appeared on the Buddha’s strap comparing 
to that of the GHE.  
 
2.3. Simplification 
The above parametric method still has to access the entire R𝑖𝑖 ,𝑗𝑗  for 
estimating distribution, in particular the derivations of the two 
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variables, 𝜇𝜇𝑖𝑖 ,𝑗𝑗𝑒𝑒𝐺𝐺𝑡𝑡  and 𝜎𝜎. To reduce the required computations, the 
concept of the integral image is adopted in this work as described 
below,  
𝐼𝐼𝑖𝑖 ,𝑗𝑗 = ∑ ∑ 𝑥𝑥𝑚𝑚 ,𝑛𝑛

𝑗𝑗
𝑛𝑛=0

𝑖𝑖
𝑚𝑚=0 ,                               (10) 

where 𝑥𝑥𝑚𝑚 ,𝑛𝑛  denotes the grayscales. This derivation is possible to 
be simplified when raster scan path is applied. For instance, to 
calculate the integral value at a specific location (i, j), the above 
equation can be rewritten as  

𝐼𝐼𝑖𝑖 ,𝑗𝑗 = 𝑥𝑥𝑖𝑖 ,𝑗𝑗 + � � 𝑥𝑥𝑚𝑚 ,𝑛𝑛

𝑗𝑗

𝑛𝑛=0

𝑖𝑖−1

𝑚𝑚=0
+ � � 𝑥𝑥𝑚𝑚 ,𝑛𝑛

𝑗𝑗−1

𝑛𝑛=0

𝑖𝑖

𝑚𝑚=0

−� � 𝑥𝑥𝑚𝑚 ,𝑛𝑛

𝑗𝑗−1

𝑛𝑛=0

𝑖𝑖−1

𝑚𝑚=0
 

   = 𝑥𝑥𝑖𝑖 ,𝑗𝑗 + 𝐼𝐼𝑖𝑖−1,𝑗𝑗 + 𝐼𝐼𝑖𝑖 ,𝑗𝑗−1 − 𝐼𝐼𝑖𝑖−1,𝑗𝑗−1 .                    (11) 
In addition, to extend this formula to derive the kth moment (𝑚𝑚𝑖𝑖 ,𝑗𝑗

(𝑘𝑘)) 
of a specific region, this equation can be rewritten as below, 
𝐼𝐼𝑖𝑖 ,𝑗𝑗

(𝑘𝑘) = ∑ ∑ 𝑥𝑥𝑚𝑚 ,𝑛𝑛
𝑘𝑘𝑗𝑗

𝑛𝑛=0
𝑖𝑖
𝑚𝑚=0 = 𝑥𝑥𝑖𝑖 ,𝑗𝑗𝑘𝑘 + 𝐼𝐼𝑖𝑖−1,𝑗𝑗

(𝑘𝑘) + 𝐼𝐼𝑖𝑖 ,𝑗𝑗−1
(𝑘𝑘) − 𝐼𝐼𝑖𝑖−1,𝑗𝑗−1

(𝑘𝑘) ,   (12) 

𝑚𝑚𝑖𝑖 ,𝑗𝑗
(𝑘𝑘) = �𝐼𝐼

𝑖𝑖+�𝑀𝑀2 �,𝑗𝑗+�𝑁𝑁2 �
(𝑘𝑘) − 𝐼𝐼

𝑖𝑖−�𝑀𝑀2 �,𝑗𝑗+�𝑁𝑁2 �
(𝑘𝑘) − 𝐼𝐼

𝑖𝑖+�𝑀𝑀2 �,𝑗𝑗−�
𝑁𝑁
2
�

(𝑘𝑘) + 𝐼𝐼
𝑖𝑖−�𝑀𝑀2 �,𝑗𝑗−�

𝑁𝑁
2
�

(𝑘𝑘) � /

�R𝑖𝑖 ,𝑗𝑗 �,                                             (13) 
where the operations ⌊∙⌋ and ⌈∙⌉ denote round down and round 
up, respectively. Thus, the required computations of 𝜇𝜇𝑖𝑖 ,𝑗𝑗𝑒𝑒𝐺𝐺𝑡𝑡 = 𝑚𝑚𝑖𝑖 ,𝑗𝑗

(1) 

and 𝜎𝜎 = �𝑚𝑚𝑖𝑖 ,𝑗𝑗
(2) − �𝑚𝑚𝑖𝑖 ,𝑗𝑗

(1)�
2
 can be significantly simplified, and 

the computation is independent to the size of �R𝑖𝑖 ,𝑗𝑗 � theoretically.  
 
2.4. Implementation 
Similar to the traditional LHE, the two parameters, M and N, are 
left to control the enhanced region size as needed. First, the whole 
integral images 𝐼𝐼𝑖𝑖 ,𝑗𝑗

(1)  and 𝐼𝐼𝑖𝑖 ,𝑗𝑗
(2)  should be calculated in advance 

through Eq. 12. Subsequently, Eqs. 4 and 7 are adopted to enhance 
each pixel independently, in which the required variables 𝜇𝜇𝑖𝑖 ,𝑗𝑗𝑒𝑒𝐺𝐺𝑡𝑡  
and 𝜎𝜎 can be simply derived by 𝑚𝑚𝑖𝑖 ,𝑗𝑗

(1) and 𝑚𝑚𝑖𝑖 ,𝑗𝑗
(2), and they need 

to use the calculated 𝐼𝐼𝑖𝑖 ,𝑗𝑗
(1) and 𝐼𝐼𝑖𝑖 ,𝑗𝑗

(2) as defined in Eq. 13. Finally, 
the LHE contrast enhancement effect is simulated when all pixels 
are accessed. 

3. EXPERIMENTAL RESULTS 
In this section, the performance of the proposed POHE is 
evaluated. Three aspects are considered to conduct the 
comparisons among various methods, including processing 
efficiency, intensity of the enhanced local contrast, and visual 
perception quality. In this work, the testing platform is geared with 
Microsoft Windows 7 (32-bit), Visual Studio 2008 C++ compiler, 
Intel Q6600 CPU, and 3.5GB RAM for the following experiments. 
To provide an objective evaluation, the traditional local histogram 
equalization is considered as a ground truth for the proposed 
method, while the four well-known speed-oriented local contrast 
enhancement methods with the corresponding settings are also 
adopted for comparisons as below:  
1) Local Histogram Equalization (LHE) [1]. 
2) Stark’s method [13], in which the two parameters, cumulation 

function power and proportion of local-mean are set at 0.5.  
3) Yu-Bajaj’s method [14], in which the resistance factor of the 

anisotropic propagation is set at 0.1.  
4) Partially Overlapped Sub-block Histogram Equalization 

(POSHE) [16]: Since the filter size will greatly affect the 
performance of processing speed and visual quality, two sets 
of settings are adopted: 1) The smallest filter size (3x3) to 

yield the fastest computation (labeled “speed”), and 2) the 
suitable filter size (around a half of the tested block size) to 
obtain the nearly artifact-free results (labeled “quality”). 
Notably, since this method is only workable on even block size, 
the employed block size in the following experiments equals 
to the block size minus one for simplicity. In addition, the 
block size should be greater than 1/2 of the used filter size.  

5) Cascaded Multistep Binomial Filtering Histogram 
Equalization (CMBFHE) [17]: Since this method is an 
improvement of the POSHE, the features and the constraints 
are also inherited.  

 Figure 2 shows the comparison in terms of processing 
efficiency to evaluate the above and the proposed method, where 
the computational time is the average time, and the test images are 
of size 512x512. As it can be seen, the block size does not affect 
the processing time of the proposed method, and the 
corresponding average time is 50.2 milliseconds. Thus, the 
proposed method is proved to be able to yield excellent 
performance on this evaluation, yet some former methods such as 
the LHE and Yu-Bajaj’s method provide even better results when 
block size is smaller or equal to 5. Nonetheless, since these small 
block sizes are rarely used for contrast enhancement, the 
superiority of them does not provide an essential value in practical 
applications as well. On the other hand, the processing efficiency 
of the former POSHE and CMBFHE schemes with the 
speed-oriented setting (labeled “speed”) are superior to the 
proposed POHE when block size is greater or equal 17, while the 
visual quality and the effect of local enhancement will 
significantly degrade as discussed below. 
 Figure 3 shows some practically enhanced results of the 
above methods, in which four different blocks including 17, 65, 
257, and 513 are applied to obtain the corresponding results. 
Herein, the result of the LHE as shown in Fig. 3(c) is considered 
as the ideal case for comparison. Basically, all of the methods are 
able to provide the local contrast enhanced results, though Stark’s 
and Yu-Bajaj’s methods offer a relatively weak performance. 
Focusing on the POSHE and CMBFHE, although the two methods 
adopt a big filter size in the quality-oriented setting to achieve 
artifact-free visual quality, the filtering also removes 
high-frequency details, and thus smooth outputs are presented. In 
addition, the local contrast of these methods are inversely 
proportional to the block size as tending to the result of the GHE 
(it can be observed from the results of Fig. 3(g), (i)-(j) at block of 
size 513 (512 for POSHE and CMBFHE)). These drawbacks can 
also be observed from the results generated with the 
speed-oriented setting. Moreover, the blocking artifact is also 
enhanced when smaller block sizes are employed, in particular the 
cases shown in Figs. 3(f) and (h) at block of size 64. Conversely, 
the proposed method can provide excellent contrast enhancement 
result even a bigger block size is utilized. As a result, the proposed 
method can yield significant improvement in terms of processing 
efficiency and image quality, and thus which can be considered as 
an excellent candidate in coping with the contrast enhancement 
applications in most of the pattern recognition fields. 

4. CONCLUSIONS 
In this paper, a local contrast enhancement method, namely 
Parametric-Oriented Histogram Equalization (POHE), is proposed 
to meet the high speed processing requirement of practical pattern 
recognition applications. According to the experimental results, it 
is proved that the computational time can be maintained in a 
constant level when different block sizes are adopted. As 
documented in the experimental results, the proposed method 
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effectively simulate the enhancement effect of the local histogram 
equalization as well as offering extremely low computational 
complexity. Furthermore, the proposed method also provide a 
number of superiorities simultaneously, including the 
distinguishable local image details, artifact-free results, and the 
key element of high efficiency (these are hard to be achieved 
simultaneously by the former methods). Consequently, it is evident 
that the proposed methods can be a very competitive candidate for 
practical pattern recognition related enhancement applications. 
 

 
Original image    GHE 

 
LHE (17)     LHE (65)     LHE (257)    LHE (513) 

 
POHE (17)    POHE (65)   POHE (257)   POHE (513) 

Fig. 1. Results of the traditional global/local HEs, and the 
proposed POHE with Gaussian kernel function. (The test image is 

of size 512x512; ��R𝑖𝑖 ,𝑗𝑗 �  are represented as (∙) , and for 

simplicity, M=N) 
 

 
Fig. 2. Comparison of averaged processing efficiency with various 
contrast enhancement methods. (Note that the block size for the 
methods of POSHE and CMBFHE are the used block size minus 
one since they are only workable at even block size) 
 

 
(a)               (b) 

 
(c)               (d)               (e) 

 
(f)               (g)               (h) 

 
(i)               (j) 

Fig. 3. Contrast enhanced results of various methods. (The 
subfigures (c)-(j) are the combination of four results generated 
with four different block sizes. Moreover, the left 1/4 columns of 
the enhanced images are cropped to construct the results as these 
subfigures; the results from left to right are the results enhanced 
with block sizes of 17, 65, 257, and 513, respectively) (a) Original 
image. (b) GHE. (c) LHE. (d) Stark’s method [13]. (e) Yu-Bajaj’s 
method [14]. (f) POSHE (speed) [16]. (g) POSHE (quality) [16]. 
(h) CMBFHE (speed) [17]. (i) CMBFHE (quality) [17]. (j) 
Proposed POHE. 
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