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ABSTRACT

A novel algorithm is proposed, that performs tracking of rigid
objects in 3D videos, without knowledge of the camera cali-
bration parameters, by exploiting only visual information ob-
tained from the left and right video channels, namely lumi-
nance and disparity information. The proposed algorithm ex-
ploits noisy disparity maps that have been extracted by a real-
time disparity estimation algorithm. The algorithm employs
two appearance-based representation methods for describing
the object texture. The first one combines luminance with dis-
parity information and the second one employs Local Steering
Kernel (LSK) descriptors.

Index Terms— stereo object tracking, disparity maps, lo-
cal steering kernels

1. INTRODUCTION

The task of visual object tracking refers to the identification of
moving objects’ trajectories in videos. Exploitation of the ex-
tracted trajectories occurs in a wide range of applications in
computer vision [1][2]. Traditionally, visual object tracking
is applied to monocular videos acquired in the single-camera
setting. However, the replacement of single-camera systems
from multi-camera ones created the need for developing vi-
sual object tracking algorithms exploiting information from
multiple videos [3]. The most common multiview-camera
setting is the one that consists of a stereo camera. These sys-
tems exploit the additional information obtained by exploiting
the stereo geometry, namely the disparity information. In the
stereo configuration, object tracking may be performed on ei-
ther the left or the right [4], or both [5] video channels.

The majority of stereo object tracking algorithms operate
on videos captured by fixed position cameras in constrained
environments with known calibration parameters [3][6][7][8].
However, the vast majority of the available stereo videos,
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coming from 3D cinema and 3D television, or home-made
videos captured from low-cost stereo cameras, are captured
in unconstrained environments with no knowledge about the
intrinsic or extrinsic parameters of the stereo system. There-
fore, such tracking algorithms cannot be applied to these
videos.

In this paper, we present a stereo object tracking algo-
rithm, that operates concurrently on the left and right video
channel of the stereo camera. The algorithm exploits low
quality stereo information obtained from a real-time disparity
estimation algorithm, for predicting the object position sep-
arately in the left and right channel and for ensuring stereo
consistency of the object displacement in the two channels.
The proposed algorithm can be applied to any video captured
from a stereo camera, in any environmental setting, requir-
ing no knowledge about the camera calibration parameters.
Similar stereo tracking approaches that rely only on visual
information are the ones in [4] and [5]. The tracking algo-
rithm in [4] is designed for person tracking only (consists
of face detection+skin color segmentation) in a single video
channel plus disparity framework, while our proposed method
performs generic object tracking concurrently on the left and
right video channels of the stereo system. The tracking al-
gorithm in [5] performs generic object tracking by exploit-
ing disparity information in the calculation of the object 3D
velocity while the proposed algorithm incorporates disparity
information in the object appearance model.

The proposed algorithm performs tracking of rigid objects
in 3D videos, without knowledge of the camera calibration
parameters, by exploiting only visual information obtained
from the left and right video channels, namely luminance and
disparity information. Disparity is the displacement (in pix-
els) of the projection of a 3D point in the left and right video
channel [9]. The proposed algorithm exploits low quality dis-
parity maps that have been extracted by a real-time dispar-
ity estimation algorithm [10]. The algorithm employs two
appearance-based representation methods for describing the
object texture. The first one combines luminance with dispar-
ity information and the second one employs Local Steering
Kernel (LSK) descriptors [11].
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The paper is organized as follows. Section 2.1 presents
the fusion of color and disparity information for texture rep-
resentation. Section 2.2 presents the object texture description
based on LSKs. Section 2.3 describes the prediction the ob-
ject position separately in the left and right channel. Section
2.4 describes the selection of the stereo object pair final po-
sition. Section 3 presents the experimental evaluation of the
proposed method. Finally, conclusions are drawn in section
4.

2. ALGORITHM DESCRIPTION

Tracking commences with manual initialization of the regions
of the object projections (regions of interest - ROIs) on the
first frame of the left and right video channels. In the fol-
lowing, we define as stereo ROI pair the object ROIs on the
left and right frame that correspond to the same time instance.
Then, tracking proceeds in two successive steps. First, can-
didate object ROIs are extracted individually for the left and
right channel and, then, the results are merged in order to ex-
tract the final stereo ROI pair.

2.1. Luminance-disparity based texture representation

Disparity is the most essential information the stereo systems
provide, as it provides information about the object relevant
distance from the camera, i.e., it grows when the object ap-
proaches the camera. In the proposed algorithm, disparity
information is combined with luminance information in 2-
dimensional color-disparity histograms (2D-CDH), for object
texture representation. Since the available disparity maps
contain a significant amount of noise, we employ coarse
color-disparity histograms with 16 bins in each dimension.
The color bins widths are selected uniformly in the range
[0, 255], while the selection of the disparity bins is performed
as follows:

1. Set the first bin width from 0 to the minimum disparity
value of the first frame.

2. Set the sixteenth bin width from the maximum disparity
value in the first frame to the maximum disparity value
of the entire video.

3. Set the width of the second to fifteenth bins uniformly
in the range from the minimum to the maximum dis-
parity value of the first frame.

For each object ROI, three 2D-CDHs are extracted, HR,
HG,HB ∈ <16×16 for the red, green and blue component,
respectively in the RGB color space.

Generally, 2D-CDHs are sensitive to illumination varia-
tions, changes in the object view point and object displace-
ment with respect to the camera position, therefore they vary
throughout the video duration. However, by considering that

these changes are small between two consecutive frames, 2D-
CDHs can be exploited for a coarse discrimination of the ob-
ject ROI from the background, as will be described in Sub-
section 2.3.

2.2. Local Steering Kernel based texture representation

Local Steering Kernels (LSKs) are local image texture de-
scriptors that measure the similarity of a pixel with its P × P
surrounding pixels, taking into account both pixel value and
pixel distance information:

k(yl − y) =

√
det(Cl)

2π
· exp

{
− (yl − y)TCl(yl − y)

2

}
,

(1)
l = 1, . . . , P 2, where y,yl ∈ Z+2 are the vectors of the cen-
ter pixel and the neighboring pixel coordinates, respectively.
Cl is the covariance matrix of the pixels’ gradients. The LSK
object representation is invariant to small object changes in
appearance that occur between two consecutive video frames.
In the proposed algorithm, a more detailed object texture rep-
resentation is determined by an object model, consisting of
the object LSK representation in the first video frame and k
additional object LSK representations, presenting representa-
tive object instances in previous frames. A separate object
model is defined for each video channel. LSKs are more dis-
criminative texture descriptors than 2D-CDHs, therefore they
are employed for a more detailed object search, as it will be
described in Subsection 2.3.

2.3. Single-channel candidate object ROIs extraction

In the first step of the algorithm, candidate object ROIs are
extracted individually for the left and right channel. At first,
the object translation for frame t to frame t+ 1 is performed.
Since this stage is not crucial for the tracking performance, a
simple first order Kalman filter [12] is employed. Centered
at the predicted position ŷt+1, a search region is defined with
dimensions Sx × Sy proportional to the object dimensions
Qx × Qy , Sx × Sy = aQx × aQy . The constant parame-
ter a regulates the search region size and takes small values
(e.g. a = 1.5), for slow/smooth object movements and larger
values (e.g. a = 2) for faster/complicated object movements.

The search region determines the area in which the new
object position will be searched. This object position may be
determined by exhaustive search, however exhaustive search
is computationally demanding. Therefore, subsampling of the
search region is performed, by selecting randomly only n <<
(Sx−Qx+1)·(Sy−Qy+1) candidate object ROIs, according
to:

Yt+1 = {y1
t+1, . . . ,y

n
t+1} ∼ N(ŷt+1,Σ), (2)

where Σ = diag[Sx/m, Sy/m]. A typical value for m is
m = 4.
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After the candidate object ROIs are determined, a coarse
search for the new object position is performed based on 2D-
CDHs. More specifically, the 2D-CDHs of the candidate ob-
ject ROIs are computed and compared to the 2D-CDHs of the
object ROI at frame t, by column-stacking the 2D-CDHs and
applying cosine similarity. Then, 80% of the candidate ob-
ject ROIs with the lowest 2D-CDH similarity to the object at
frame t are discarded and a more detailed search is performed
to the remaining candidate object ROIs, based on LSK simi-
larity to the object model defined in Subsection 2.2. For the
i-th candidate object ROI, its LSK similarity is computed by
the average cosine similarity to the LSK representations of
the object model, according to:

vi = λ
c2i1

1− c2i1
+

1− λ
k

k∑
j=2

c2ij
1− c2ij

∈ [0,+∞), (3)

where cij is the cosine similarity between the LSK representa-
tions of the i-th candidate object ROI and the j-th LSK repre-
sentation of the object model. λ is a parameter that determines
the weight of the LSK similarity to the object LSK represen-
tation in the first frame. A typical value for λ is 0.5.

This procedure is repeated for the left and right channels.
The candidate object ROI with the highest LSK similarity to
the object model is considered the best candidate object ROI
for the corresponding channel. Finally, the new object posi-
tion is extracted by combining the results of the two channels,
as will be explained in the following Subsection.

2.4. Stereo ROI pair extraction

After the best object ROI from the left and right channel are
extracted, disparity information is exploited, in order to take
the final decision on the new object position. Let us denote by
yl, yr, the best object ROI position in the left and right chan-
nel, respectively, with corresponding LSK similarities vlyl ,
vryr and mean disparity values d̄yl , d̄yr pixels. Two candidate
stereo ROI pairs are extracted. The first (second) stereo ROI
pair is generated from yl (yr) by selecting the object ROI in
the right (left) channel displaced horizontally d̄yl (d̄yr ) pixels
to the right (left). This selection of the stereo ROI pairs en-
sures the stereo consistency of the of the object displacement
in the two channels. The final decision of the new object po-
sition yt+1 is taken according to the LSK similarities of the
generated ROI pairs to the object models:

yt+1 = yj′ = arg max
yj

{
1

2

(
vryj + vlyj

)}
, j = r, l. (4)

Finally, the object models are updated with the new object
ROI pair every time the maximum LSK similarity drops under
a predetermined threshold.

3. EXPERIMENTAL RESULTS

The performance of the proposed algorithm was tested in two
videos captured by a commercial stereo camera. The video
resolution was 1920 × 1080 pixels per channel. The method
employed for extracting the disparity maps is described in
[10]. The initialization of the tracking algorithm was accom-
plished with the object detector described in [11]. The pro-
posed framework takes into consideration the information ob-
tained from both the right and left videos, leading to a stereo-
consistent representation of the tracking result, i.e., the drawn
bounding boxes in the left and right frames can be viewed in
a 3-D display monitor as a single stereo bounding box. The
significance of the incorporation of disparity information in
the stereo tracking algorithm is examined by comparing the
performance of the stereo tracker to the performance of three
state of the art appearance based single channel trackers: CH
tracker [13], which is based on color histogram information
and particle filtering, L1 tracker [14], which is based on sparse
representation of the object and CT tracker [15], which per-
forms real-time compressive tracking.

The task in the first stereo sequence (Figure 1) is to track
a rigid object that moves smoothly, with small changes in ap-
pearance due to scaling (the object moves towards and away
from the camera), changes in the view angle and partial occlu-
sion (by the hands). We notice that only the stereo tracker and
the PF tracker were able to track the object in the entire video
duration, however the stereo tracker performs more accurate
tracking. In the second experiment (Figure 2), the task is to
track a rigid object (a helmet) with constant changes in the
view angle, small scale variations and partial occlusion. We
notice that the stereo tracker and the CT tracker where able to
keep track of the object in the entire video duration. The PF
tracker was able to track the object correctly only in the left
channel, since in the right channel the tracker kept reducing
the object size.

4. CONCLUSION

A novel stereo object tracking was presented, that employs
a coarse and a more detailed appearance-based representa-
tion of the object texture. The proposed algorithm can be ap-
plied to any video captured from a stereo camera, in any envi-
ronmental setting, requiring no knowledge about the camera
calibration parameters. The proposed framework achieves a
stereo-consistent representation of the tracking result, i.e., the
drawn bounding boxes in the left and right frames can be dis-
played in a 3D monitor as a single stereo bounding box. Ex-
perimental results showed the ability of the proposed stereo
tracker to track rigid objects under appearance changes and
partial occlusion.
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Fig. 1. Tracking results of a rigid object with small changes in appearance and partial occlusion. Solid bounding box: stereo
tracker, dotted bounding box: CT tracker, dashed bounding box: PF tracker, dash-dot bounding box: L1 tracker.
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Fig. 2. Tracking results of a rigid object with constant changes in view angle. Solid bounding box: stereo tracker, dotted
bounding box: CT tracker, dashed bounding box: PF tracker, dash-dot bounding box: L1 tracker.
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