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ABSTRACT
Automatic speech analysis is currently evolving towards hybrid sys-
tems that combine both visual and acoustic information. This is due
to limitations of existing acoustic-based approaches and the need for
robust speech recognition systems working under extremely chal-
lenging conditions including noisy environments.

We introduce in this paper a novel visual speech recognition ap-
proach, based on string kernels and support vector machines. The
main contributions of this work include (i) the design of a similar-
ity function, based on string kernels, that models the dynamics as
well as the appearance of visual features in talking faces and (ii)
a kernel combination procedure based on multiple kernel learning,
that makes visual feature selection effective and also more tractable.
Experiments conducted, on a standard digit database, show that the
proposed algorithm outperforms current state-of-the-art methods.

Index Terms— Visual speech recognition, string kernels, sup-
port vector machines, visual feature selection, kernel combination.

1. INTRODUCTION

Speech perception is a multimodal process which integrates audio
and visual information [1]. Over the past twenty years many authors
have focused on improving automatic speech recognition (ASR)
systems by incorporating visual features jointly with acoustic sig-
nals. Improvements are substantial especially in noisy environments,
where conventional acoustic-based ASR systems perform badly [2].
The well known McGurk effect (shown in [3]) illustrates the impor-
tance and the interaction between the two modalities by conflicting
visual stimulus example. For instance when a voice saying /ba/ was
presented with a face articulating /ga/ most subjects heard /da/.

The growing trend in this research area reflects the need to de-
sign robust systems for real-world applications including multimodal
person identification, expression analysis, surveillance, and human
machine interaction with multimodal remote control or speech en-
hancement. Related works can be divided into two research fields:
automatic audio-visual speech recognition [4, 5, 2] (AVSR) which
merges both modalities and visual speech recognition [6, 7, 8, 9]
(VSR) also referred to as lip-reading.

Despite the increasing interest in this domain, performance of
automatic lip-reading systems remain insufficient. The major dif-
ficulty stands in extracting relevant visual features. Moreover, un-
like ASR systems, there is some inherent inter-speaker variability,
in lip-motion and appearance, which causes significant drop in per-
formance, when speaker utterances are classified with visual models
trained on others. Our main effort is dedicated to extract speech-
relevant visual features while being speaker-independent.

Several types of features, for visual speech recognition, have
been proposed in the literature and are commonly grouped into two

categories. Bottom-up (pixel-based) approaches compute mouth
appearance directly from pixels within a region-of-interest (ROI).
On the other side, top-down (model-based) approaches are based
on geometric features and require mouth shape tracking. It is ob-
served [2] that lip movements, tongue and facial muscles are more
important than appearance, but they do not necessarily incorporate
speech-relevant information. A model-based approach that com-
bines shape and appearance aspects was first used for lip-reading
in [8]. Authors of [6] compared the influence of both aspects and
concluded that appearance is more informative than shape. However
appearance-based features [2, 4] describe global mouth information
and disregard local changes due to pronunciation. The work in [7]
models these local changes using patch-based subdivision of the
ROI. Other methods, including active appearance model (AAM),
are also well suited to locate and track facial feature points during
speech but they are also speaker dependent. Recently, a ROI-based
AAM was introduced in [5] to extract speech-related information
confined in lower face parts; a speaker-dependent normalization was
also used in order to better encode speech unit variability.

In this paper, we introduce a novel visual speech recognition
algorithm, based on support vector machines (SVMs). This work
includes two main contributions

• We use string kernels in order to measure the similarity as
well as the dynamics of visual (appearance and motion) fea-
ture sequences, in talking faces. The application of string ker-
nels in visual speech recognition is novel and also natural in
order to handle non vectorial data, i.e., sequences of different
lengths.

• And we propose a novel training procedure, guided by the
maximization of performance of SVMs, via multiple kernel
learning (MKL). Our solution is based on an efficient and also
effective greedy strategy for feature and string kernel combi-
nation.

Our choice was also motivated by the good generalization ca-
pability of SVMs in order to handle few training examples in high
dimension data, in contrast to generative models, including Hidden
Markov Models (HMMs). Indeed, discriminative machine learning
methods, particularly kernel machines, are receiving increasing at-
tention for ASR [10, 11, 12].

The rest of this paper is organized as follows: In Section 2 we
first introduce our method for visual speech representation by an
original design of structured features. Section 3 addresses the prob-
lem of visual speech classification and describes the proposed fea-
ture combination approaches. Experimental results demonstrating
state-of-the-art performance are described in Section 4 before we
conclude in Section 5.
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Fig. 1. System overview: [A] Interest points tracking using deformable model, [B] Local features extraction from each point neighborhoods,
[C] Tuple codebook learning, [D,E] Visual speech classification, [F] Tuple selection strategies, [G] MKL for kernel and structured feature
selection.

2. VISUAL SPEECH REPRESENTATION

In this section, we present our method for visual speech representa-
tion, based on structured visual features that capture speech-induced
variability. We compute histogram based descriptors in local neigh-
borhoods of tracked interest points (see Fig. 1-AB and Section 2.1)
and we describe visual speech using sequences of quantized struc-
tured features (see also Fig. 1-CD and Section 2.2).

2.1. Facial Interest Point Tracking and Description

Many approaches for detecting and tracking facial landmarks have
been proposed in the past few years. A popular choice is the
deformable template model called active appearance model [13]
(AAM) which is built by applying PCA on a set of annotated train-
ing images to model their non-rigid shape and texture variations.
Shape refers to the relative location of face landmarks including
mouth and eye corners, whereas texture refers to the visual appear-
ance of faces. During tracking, a fitting procedure [14] minimizes a
squared loss between a new face image and the face model generated
by AAM. In order to initialize the fitting procedure, state-of-the-art
face detector, based on AdaBoost [15], is used and provides reliable
performances and robustness to changes of illumination.

Appearance and motion are the key components of visual speech
analysis. In order to characterize appearance and motion, we ex-
tract histogram-based descriptors in a local neighborhood around
each tracked point. We compute Histograms of Oriented Gradient
[16] (HOG) and Histograms of Oriented Optical Flow [17] (HOF);
in practice, we use the integral image representation in order to effi-
ciently extract gradient and disparity components.

Considering a frame taken from a given video at instant t, we de-
fine Pt = {pt,i}i∈{1,..,N} as the set of N tracked 2D points around
the mouth region. We describe each point pt,i ∈ Pt with a visual
feature vector, denoted ft,i, which corresponds to the concatenation
of normalized HOF and HOG histograms extracted around pt,i.

2.2. Structured Feature Quantization

Let I = {1, .., N} be the union of indices corresponding to the fa-
cial landmarks shown in Fig. 2. Let s be any subset of I, referred
to as tuple and S(n) = {s ⊆ I, |s| = n}. Given a frame, at instant
t, and a tuple s ⊆ S(n), we define a feature vector Dt,s = [ft,i]i∈s
as the concatenation of n distinct feature vectors {ft,i}i with i ∈ s.
Note that, by construction, each feature vector Dt,s captures local

Fig. 2. This figure shows 12 tracked facial landmarks and a tuple
s ⊆ S(3).

visual informations as well as spatial relationships between its un-
derlying facial landmarks. In the remainder of this paper, Dt,s will
be referred to as structured feature vector.

Fix a tuple s and consider Ds as the union of all structured fea-
ture vectors1 with indices in s. In order to map a given feature vector
Dt,s to a unique codeword, we first partition Ds into k clusters us-
ing k-means, and then we assignDt,s to the “cluster number” whose
center is the closest to Dt,s. The set of cluster numbers (or code-
words), denoted As is referred to as codebook. In practice, we test
codebooks of different sizes including 10, 50, 100, 256 and 1000.
Now, given a video with ` frames and ` structured feature vectors
{Dt,s}t∈{1,...,`} taken from location indices in s; we map these vec-
tors to an ordered sequence of codewords, denoted Xs, with Xs ∈
A`s. We repeat this vector quantization and mapping process for dif-
ferent tuples in S(n) and different values of n (see experiments).

3. TUPLE SELECTION AND COMBINATION

Although structured features, associated to different tuples, are ex-
pected to be complementary, they may share common – redundant
– informations and only a subset of these features is discriminant.
Therefore, it is necessary to define a procedure that selects and com-
bines these structured features while optimizing the performance of
visual speech recognition. In the subsequent section, we propose dif-
ferent tuple (and hence structured feature) selection and combination
strategies, that best capture “visual speech”-induced variability (see
Fig. 1-FG). Inspired by successful results in the neighboring field of
text classification, we also introduce string kernel-based machines
that effectively handle time varying “visual speech” sequences (see
also Fig. 1-E and Section 3.3).

1These feature vectors are extracted from different frames of our training
videos at location indices in s.
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3.1. Tuple Combination using Multiple Kernel Learning

In this section, we use multiple kernel learning [18] (MKL) in order
to combine tuples and the underlying structured features. MKL
considers linear combination of multiple kernels, associated to dif-
ferent tuples, and finds “optimal” weights of this combination while
training multi-class SVMs.
Let Xs = ∪L`=1A`s be the union of all possible sequences of lengths
up to (a fixed) L; again As is the codebook associated to a given
tuple s. We consider T = {X(j)}j as a training set of multi-
sequences2 with X(j) = {X(j)

s ∈ Xs}s and yj ∈ {1, . . . ,M} as the
label (or class) of X(j) taken from a well defined ground truth; in
practice, M = 10.
Multi-class SVMs use a mapping Φs, that takes data from the input
space Xs to a high (possibly infinite) dimensional spaceHs and find
the (unknown) label of a given test sequence Xs ∈ Xs as

arg max
y∈Y

fy,s(Xs), (1)

here Y = {1, . . . ,M} and fy,s(Xs) = 〈wy,s,Φs(Xs)〉+ by,s, with
wy,s, by,s being respectively hyperplane normal and bias associated
to a given class y ∈ Y and tuple s.
In order to combine different tuples, we use multiple kernel learning
that generalizes the above SVM framework. Its main idea consists in
finding a kernel, denoted K, as a linear combination of different ele-
mentary kernels {ks}s associated to different tuples {s ⊆ ∪nS(n)}.
Thus, the kernel value between two multi-sequences X = {Xs}s,
X′ = {X′

s}s is defined as

K(X,X′) =
∑
s

βs〈Φs(Xs),Φs(X′
s)〉 =

∑
s

βsks(Xs,X′
s), (2)

here βs ≥ 0 and each kernel ks operates using only the structured
features of its underlying tuple s. Using a primal formulation, we
predict the (unknown) label of a given multi-sequence X as

arg max
y∈Y

fy(X), (3)

with fy(X) =
∑
s βs〈wy,s,Φs(Xs)〉+by and by , {wy,s}s being re-

spectively the bias and the hyperplane normals associated to a given
class y, for different tuples. We choose the parameters β = {βs}s,
b = {by}y and w = {wy,s}y,s, by solving the following constrained
minimization problem

min
β,w,b,ξ

1

2

∑
s

∑
y∈Y

βs〈wy,s,wy,s〉+

|T |∑
j=1

ξj

s.t ξj = max
u∈Y\yj

l
(
fyj (X(j))− fu(X(j))

)
,

(4)

here yj ∈ Y is the actual label of X(j), ξ = {ξj}j and l(.) is a
convex loss function.

3.2. Greedy Tuple Selection and Aggregation

If one considers high order tuples S(n) (with n > 2) then |S(n)| in-
creases rapidly for some values of n and the tuple selection process
becomes computationally prohibitive. In order to make this selec-
tion process more tractable, we propose in this section strategies that
efficiently select tuples of increasing orders.

2A multi-sequence is a set of “sequences of codewords” extracted, from
the same video frames, as described in Section 2.2. Each “sequence of code-
words” is associated to a tuple s ⊆ I.

Figure 3. Diagram of the
bipartite assignment pro-
cedure used in order to se-
lect tuples in S(3) by aug-
menting those previously
selected in S(2).

3.2.1. Geometry-based Tuple Aggregation

Lip motion variability is due to various articulations and also to the
different “visual speech” classes. In order to characterize this vari-
ability, we build a set of tuples using velocity statistics of the tracked
facial landmarks around the lips. We start this selection process
with the smallest order, i.e. with singletons in S(1), and we fol-
low a greedy approach that incrementally selects tuples in S(n+1)

by augmenting those selected in S(n) using a variance maximiza-
tion criterion (VMC) described below.
Our VMC strategy computes the Hausdorff distance, through differ-
ent video frames, between (i) the 2D points related to selected tuples
in S(n) and (ii) the 2D points of singletons in S(1). We select tuples
in S(n+1) by finding the best assignment between tuples in S(n) and
singletons in S(1). Let’s consider G(n) = 〈V(n)∪V(1),V(n)×V(1)〉
as a bipartite graph where nodes in V(n) (resp. V(1)) are associ-
ated to tuples in S(n) (resp. in S(1)) and edges in V(n) × V(1) are
weighted inversely proportional to the Hausdorff distance between
the underlying nodes (see Fig. 3) . We find an assignment between
nodes in G(n) by solving a bipartite graph-matching problem; the
Kuhn-Munkres algorithm provides an assignment with a minimum
cost equal to the sum of the weights of the selected edges in G(n).
We repeat this selection process for increasing values of n (taken
from {1, 2, 3, 4} in practice). At the end of this selection process,
we only keep the tuples with high variances in order to achieve vi-
sual speech recognition.

3.2.2. MKL-based Tuple Aggregation

Similarly, this second procedure proceeds using aggregation. Ini-
tially, we start the process by learning a linear combination of ele-
mentary kernels each one assigned to a singleton tuple, then we keep
only the singleton tuples with the highest MKL weights {βs}s. We
repeat this process, for increasing values of n, by taking kernels (and
hence tuples) selected at iteration n−1, and linearly combining them
with the elementary kernels associated to tuples in S(n). Again, we
only keep tuples with the highest MKL weights. At the final stage of
this process, the obtained linear combination of kernels corresponds
to a set of discriminant tuples of different orders.

3.3. Elementary Kernels

We aim at classifying finite sequences, corresponding to visual
speech units (codewords). As these sequences may vary in time, we
map them to fixed length (high dimensional) representations using
string kernels. Each kernel map captures local transitions between
visual speech units along a sequence.
Given a sequence Xs ∈ Xs (associated to a tuple s ⊆ ∪nS(n))
with codewords in As. The (g,m)-mismatch kernel [19] induces
the following |As|g- dimensional representation for that sequence:
if α is a g-mer (i.e., α ∈ Ags), then Φ

(g,m)
s (α) = (φγ(α))γ∈Ag

s
,

where φγ(α) = 1{γ∈N(g,m)(α)} and N(g,m)(α) denotes the set of
all g-length sequences (taken fromAs) that differ from α by at most
m mismatches. For a sequence Xs ∈ Xs of any length, we extend

2422



(a) (b) (c)

Fig. 4. These figures show experiments on the CUAVE set. The classification accuracies w.r.t different tuple selection strategies and codebook
sizes are shown in (a). The distribution of tuple orders (of selected structured features) is shown in (b). The confusion matrix for 10-digit
classification is shown in (c) .

by summing the maps for all the g-mers in Xs, leading to

Φs(Xs) =
∑

g-mers α in Xs

Φ(g,m)
s (α). (5)

Hence, the elementary mismatch kernel, associated to a tuple s, is
defined as ks(Xs,X′

s) = 〈Φs(Xs),Φs(X′
s)〉, Xs,X′

s ∈ Xs. As de-
scribed in [20], we take weighted sums of (g,m)-mismatch kernels
for different values of g.

4. EXPERIMENTS

4.1. Evaluation Set and Settings

In order to evaluate the performance of our visual speech recognition
method, we use the CUAVE database [21] including videos recorded
at a frame rate of 29.97 fps and a resolution of 740×480 pixels. We
consider a subset of videos including (nearly frontal) talking faces
belonging to 36 different speakers. These speakers pronounce digits
between zero and nine in American English.
Each video in the CUAVE set is processed in order to extract
HOG and HOF descriptors. The latters correspond to orientation
histograms (of 6-bins and 7-bins respectively) extracted, in local
neighborhoods of 29 × 29 pixels, around twelve lip landmarks.
These local descriptors are used to learn codebooks of different
sizes, in {10, 50, 100, 256, 1000}, and also to build the elementary
(g,m)-mismatch kernels (with g ∈ {1, 2, 3} and m = 1). Elemen-
tary kernels, associated to tuples of different orders in {1, 2, 3, 4},
are linearly combined using MKL (as discussed in Section 3) and
used to learn the 10-digit SVM classifiers. Performances of these
SVM classifiers are evaluated, in a speaker independent setting,
using 9-fold cross-validation with each fold including 4 speakers.

4.2. Results and Comparison

Fig. 4a shows the evolution of the overall digit classification perfor-
mances with respect to different tuple selection strategies discussed
earlier. In these results, the baseline corresponds to random tuple se-
lection (referred to as RDM). According to these results, the best per-
formances are obtained using MKL-based tuple aggregation strategy
with a codebook of size 256. Fig. 4c shows the underlying confusion
matrix.
Table 1 shows a comparison of MKL-based strategy against RDM
(baseline) and VMC as well as related state-of-the-art visual speech

recognition techniques. From these results, it is clear that VMC and
MKL provide the two best performances; VMC is more efficient
while MKL is slightly more effective. These results are also consis-
tent with those provided in the literature. Indeed, Table 1 and Fig. 4a
show that digit classification results obtained using a single kernel
associated to a simple concatenation of all the local descriptors –
i.e., by concatenating all the descriptors associated to tuples in S(N)

(with N = 12 in practice) – are consistent with those obtained in
[4]. Similarly, the results obtained by learning a linear combination
of elementary kernels associated to singletons in S(1) are consistent
with those in [7]. Finally, Fig. 4b shows the distribution of orders (of
selected tuples) at the end of the MKL-based selection process dis-
cussed in Section 3.2.2. This distribution, which corresponds to 20
selected tuples with the highest MKL weights, is highly concentrated
around orders 2 and 3. This clearly shows that the most discriminant
structured features correspond to tuples in S(2) and S(3).

Method Accuracy
Discrete Cosine Transform [4] 64%
Fused Holistic+Patch [7] 77.08%
ROI-AAM [5] 83%
Proposed - RDM selection 79.3% ± 3.1%
Proposed - VMC aggregation 84.2% ± 2.46%
Proposed - MKL aggregation 85% ± 2.29%

Table 1. This table shows the average accuracy of visual speech
recognition on the CUAVE database using 9-fold cross validation.

5. CONCLUSION

We introduced in this paper a novel visual speech recognition algo-
rithm, based on string kernels and support vector machines. The pro-
posed method selects and combines discriminant (appearance and
motion) structured features of different orders using multiple kernel
learning.
Experiments show that the proposed feature design procedure is ef-
fective and also efficient, and achieves state of the art results in visual
speech recognition. As a future work, we are currently investigating
the application of our method to continuous speech using viseme
models in order to improve the quality of lip-reading. We are also
investigating the combination of visual and audio features in order
to handle visual speech recognition in more challenging conditions
including noisy car environments.
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