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ABSTRACT

This paper presents a new method to detect human actions
in video by combining sparse appearance features and dense
motion features in the unified random forest framework. We
compute sparse appearance features to capture the main
appearance changes and dense motion features to capture
the tiny motion changes in the video. We take advantage of
the randomization of channel selection in random trees to
combine these two complementary types of features. In
addition, linear classification is applied to grow each tree
with high efficiency. Each leaf in these trees stores the class
distribution and location information of the training samples
and action detection for the test video is accomplished by
Hough voting of the leaves in each tree. Experimental
results demonstrate that our method achieves the
state-of-the-art performance on two datasets.

Index Terms—Action detection, Multiple features,
Random forest, Hough voting

1. INTRODUCTION

Human action recognition from videos has been widely used
in many computer vision applications. In many of these
settings, it is not only essential to correctly identify the
action class, but also desirable to partition out the temporal
or spatial-temporal range within which the activity occurs in
the video. However, most of the existing methods only
focus on the classification problem and assume that the
range has been known exactly. In this paper, we focus on
the joint classification and localization problem.

1.1. Related Work

Recently, many approaches apply appearance-based features
for action recognition and detection and they are proved to
be effective [1-5]. Oshin et al. [6] perform action
recognition based on the distribution of spatial-temporal
interest points. Gorelick et al. [7] use 3-D shapes induced by
the silhouettes of human for action recognition. However,
the appearance features based recognition is not always
valid, especially for the videos with moving background. To
solve this problem, some other approaches tend to combine
multiple features for recognition and detection [8-12].
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Among the various work for action detection with multiple
features, trees based methods have been proved to be
efficient [13-17]. Lin et al [15] use shape and motion
features for action recognition. Yao ef al. [17] apply dense
sampled low-level features integrated with random forest
[18] to detect actions in video. However, most of the current
trees based methods have two main limitations. First, most
of these methods just combine many features together, but
do not consider the complementary property and
redundancy property between features. Second, they grow
each tree by a number of repetitious comparisons between
the elements of each feature. So it is time-consuming to
handle multiple high dimensional features by these methods.

1.2. Our Work

To solve the above limitations, this paper combines two
complementary types of features for action detection: sparse
appearance features and dense motion features. They are
appropriate to jointly represent the actions in video for their
complementary property, which is few considered in earlier
studies. Besides, we apply the linear classification method to
improve the efficiency and the accuracy of each random tree
in the forest. The main contributions of this work are
summarized as follows: First, we present a new method to
represent the actions with the two complementary types of
features for action detection. Second, we take advantage of
the randomization property to combine these two types of
features in each random tree for action detection, and
furthermore, this framework is also suitable for combining
multiple high dimensional features. Third, linear
classification method is introduced to grow each tree in the
forest. This makes our approach more robust compared with
the traditional random forests. Finally, we compare the
experimental results with other related methods and
demonstrate the effectiveness of our method.

2. THE PROPOSED APPROACH

As the general framework shown in Fig.1, we extract the
sparse appearance features and dense motion features in
multiple spatial scales at first, and then divide each video
into temporal or spatio-temporal volumes. Each volume is
represented by two complementary types of features. In the
training stage, a subset of the samples is randomly
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Fig.1. The proposed framework for action detection.

selected as the root node to grow each random tree, and the
linear classification method is introduced to split the
branches. In the testing stage, Hough voting is performed
for each action’s class and location by the leaves of the trees
in the forest. Finally, non-maxima suppression is applied to
get the final detection results.

2.1. Representation of Human Actions

The sparse appearance features are popular for its efficiency
to capture the main appearance changes of the actions.
However, this type of feature is too sparse to capture actions
with tiny appearance changes, such as the Golf-Swing
action which only involves the movement of the arms and
the golf club in a small range. So the dense motion features
are applied to complete the representation with the sparse
appearance features for action detection.

For the sparse appearance features, we apply the
extended Harris interest point detection and get the response
values of each region in the video. We keep the sparse
salient regions with a response value above some threshold.
Then 3-D SIFT features [19] are computed to describe these
regions. Compared with the traditional 2D SIFT descriptor,
the 3D SIFT features capture the appearance changes both
in the spatial and temporal domain, so they are more robust.
In the end, all these features are clustered to generate the
appearance codebook [I,, which represents the salient
appearance changes of the action in the video.

In order to complement the sparse appearance features
for action representation, we adopt the dense sampling
based motion features. Feature points are densely sampled
in multiple spatial scales, and then tracking is performed
using the optical flow in the corresponding spatial scale over
a fixed number of frames. Then we separately compute the
derivatives for horizontal and vertical components of the
optical flow to get the MBH (Motion Boundary Histogram)
features [12, 20]. Finally, all these features are clustered to
generate the motion codebook 7,

The optical flow of each feature point represents the
absolute changes between frames and the MBH features
compute the relative changes between optical flows, which
means the MBH features only capture the motions between
the foreground and the background. So we can remove the

continuous movement of the background in complex videos
and keep the action regions only.

For each video, we divide it into temporal or
spatial-temporal volumes, and then each volume is
represented by four types of information: sparse appearance
features, dense motion features, location information, and
the action class, defined as X;, X,, O and c respectively.

Specifically, the features in each volume are quantized
according to the appearance codebook /7, and the motion
codebook 7', respectively .Then the two types of quantized
features are used to generate the histogram representation X;
and X, of the volume individually, as shown in Fig.2.

The location of each volume is represented by the
average of all the offset of the feature points in the volume.
For each volume in a test video, the location O is defined as
the average of all the feature point coordinates (x; y; ;) in
the volume. For each volume in a training video, the
location O is defined as the average of all the offset O; of the
feature point (x; y; t;) relative to the action center (c,, ¢,, ¢,),
which is defined as

O=(co- X, ¢~y - 1) (1)

2.2. Random Forest Framework

We take advantage of the random channel selection in
random trees to combine the four types of information for
action detection. In addition, linear classification is applied
to grow each random tree in the forest which makes the
framework more efficient and robust.

For each random tree, a number of training samples are
randomly selected as the root node to avoid overfitting. The
dimensionalities of the two features X; and X, are assumed
to be d; and d, respectively. For each node S of each tree,
one type of feature X with dimension d is selected at random
to split the node (X € {X;,X,}and d € {d;,d,}). Each type
of feature is selected with equal probability, so the
framework can fully utilize the two types of features and is
also suitable for multiple other features.

The split method in most of the current work is to
compare the absolute values at two random positions of the
samples, which is time-consuming and inaccuracy for high
dimensional data. This paper proposes to randomly select a
sub-feature and splits the node by a linear classifier with the
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sub-feature.
At first, a sequence p = [py, Pz ---Pm] 1S generated at
random to represent the different indexes of the elements in
feature X. Then we get the selected sub-feature fas
f=1Xp, Xp, s Xp, 1 2)
where p; < d(i = 1,2 ...m) and X, is the p,-th element of X.
The sub-feature f is then used to perform the linear
classification to split the node S. The binary test tg sk, at
node S with linear classification parameters k and b is
defined as
0, ifkxf+b=0

t = (3)
Sfmkb {1, otherwise

The best binary test should separate the samples in the
node S with minimal class uncertainty or location
uncertainty so that the samples belonging to the same class
or in the same neighborhood are separated in the same child
node. We define |S.| as the number of the training samples
with class label ¢ in node S, |S| as the number of all the
samples in node S, C as the number of all the action classes,
and ¢, be the number of training samples with class label ¢ in
node S. Then the class uncertainty Uc and the location
uncertainty U, of node S is defined as

S, S

Ue = =ISI x &, ellog(Peh )
— 12

¢, 5% |10~ O’ )

0. =7%2,0 ©)

where 0; and O, are the offset of the i-th training sample
and the mean offset of class ¢ in node S respectively.

In each split of node S, the class uncertainty or the
location uncertainty is selected at random to make sure that
the samples either belonging to the same class or in the
same spatial-temporal neighborhood will arrive at the same
leaf. We iterate the process with different values and the
final parameters are defined as

{k,b} = argminy, {U,where U= U, or Uy} (7)

When we get /=1 and m=1, the node is split by a
surface in the direction parallel to the axes, which is
equivalent to the traditional method. In our method, the
separate surface can change in different directions and
locations with different parameters k and b. So our approach
is more robust and more efficient to complex data.

Each random tree continues growing with the above
split method until the tree reaches some maximum depth or
the number of samples in the leaf below some value. The

parameters p, k and b are recorded for each split in the
growing process and the following information is stored in
each leaf /: (1)the class distribution g.; which is defined as
the ratio between the number of samples ., within class ¢ in
the leaf and the number of the samples #,in the leaf; (2) the
offset O,;; of each sample i with class label ¢ in the leaf.

2.3. Action Detection

Each volume represented by (X;, X,, O, ¢) in the test video
goes through each tree according to the split parameters p, &,
b and reaches the leaf node /. Hough voting is performed by
the leaf and each vote is weighted to avoid the problem
induced by the difference in the quantity of the training
samples. The weight of each vote by leaf / for class ¢ is
defined as

dcl
Wer = i )]

Let O;=(x; y;, t) be the offset of the j-th test volume
which arrives at leaf / and O.; =(Ax;, Ay, At;) ; be the offset
of the i-th training sample with class label ¢ in leaf [, then
the vote from the i-th training sample in leaf / is considered
available only when the following conditions are satisfied:

0<x;—Ax; < n_width
0 <y; — Ay; < n_height C)
0 <t;—At; <n_frame
where n_width, n_height and n_frame are the width, height
and number of frames of the test video respectively.

When the conditions are satisfied, the vote is weighted

by w,, to vote for class c and location G, defined as
G = (5 -Ax;, y; -Ay,, 1 -AL) (10)

Let N.; be the number of volumes satisfied the

condition, then the final vote for class ¢ defined as
vote, =}, Wei * Ney (11)

Then non-maximal suppression is performed to get the
entire local maximum of the votes, and we decide the final
class label and location by the max number of local
maximum above a threshold.

3. EXPERIMENTAL RESULTS

We tested our approach on two public datasets: the KTH
dataset [21] and the UCF-Sports action dataset [22] which is
much more challenging. Our experiments were done with a
five-fold cross-validation [17, 23]. We compared our results
with other related methods which combined many types of
features [12, 17]. In [12], action recognition is performed by
combining MBH features with three other types of features.
In [17], Hough voting is used with random forest to
combine six types of features for action detection. The
results show that the two types of features in our framework
outperform the others.

3.1. Experimental Results on the KTH Dataset

Experiments were done in two groups on the KTH dataset:
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(1) only utilizing sparse appearance features in the proposed
framework; (2) combining sparse appearance features with
the dense motion features in the way presented.

We compare our results with the state-of-the-art results
in Table 1. As Table.1 shown, with single sparse appearance
features, the classification accuracy achieves 93.8%, which
is comparable to [17]. So this proves the effectiveness of our
framework. When combining the two types of features in

our unified framework, we report an average accuracy of 96%

which get the highest accuracy compared with others. The
results show that the only two types of features in our
proposed framework outperform [12] in which four types of
features are combined. In addition, we present the confusion
matrix in Fig.6, which shows that the accuracy of five
classes among the total six classes is above 95%.

In addition, we present the temporal localization results
by dividing the video into temporal volumes. This can be
extended easily to the spatial domain by dividing the video
into spatio-temporal volumes. The result is considered
correct only if the classification is right and the intersection—
union ratio between the predicted and ground truth boxes is
greater than 0.5. The localization results are presented in
Table 2 and show the effectiveness of our approach.

Method Accuracy(%)
Feature-tree[24] 72.9
Voc. forest[14] 93.2
Hough forest[17] 93.5
Dense Trajectories[12] 94.2
Space-time pyramids [25] 91.8
Ours(only using sparse features) 93.8
Ours (combining sparse and dense features) 96.0

Table 1. Comparison of the recognition results on the KTH dataset.

Method Foldl | Fold2 | Fold3 | Fold4 | Fold5 | Mean
SParse | gsg | 832 | 81.7 | 79.8 | 90.8 | 84.3
features
Combined | 93.3 | 90.8 | 85.8 | 79.8 | 95.8 | 89.1
Table 2. The localization results on the KTH dataset. (%)
Box 98 | 2
Hand-clap 98 | 2
Hand-wave 3197
Jog 791 15| 6
Run 319 |1
Walk 4 96

Fig.6. Confusion matrix on the KTH dataset. (%)
3.2. Experimental Results on the UCF-Sports Datasets

The UCF-Sports action dataset contains 150 broadcast
sports action videos from 10 action classes with a wide
range of scenes and viewpoints in unconstrained scenes.

On the UCF Sports action dataset, we also performed
two groups of experiments similar to those on the KTH
dataset. We present the five folds recognition results in
Table 3 and compare the results with other related methods

in Table 4. We achieve an average accuracy of 87.3% when
only the sparse appearance features are used. It outperforms
[17] in which recognition is also performed by Hough
voting. When the dense motion features are combined in the
proposed framework, the highest accuracy is 98.1% in the
4-th fold and we achieve an average accuracy of 90.3%. The
result outperforms [12] in which MBH descriptor is
combined with three other types of features. As the
confusion matrix in Fig.7 shown, there are 6 classes in the
total 10 classes for which the accuracy is above 95%.

Method Foldl | Fold2 | Fold3 | Fold4 | Fold5 | Mean

SPAISC | g4 | 89.4 | 86.7 | 94.4 | 846 | 87.3
features

Combined | 86.8 | 90.9 | 90 | 98.1 | 86.5 | 90.3

Table 3. The recognition results of the five folds on the UCF
dataset. (%)

Method Accuracy (%)
subspace forest[27] 91.3
Spatio-temporal features[26] 85.6
Dense Trajectories[12](MBH) 84.8
DenseTrajectories[12](combined) 88.2
Ours(only using sparse features) 87.3
Ours (combining sparse and dense features) 90.3

Table 4. Comparison of the recognition results on the UCF dataset.

Dive | 100

Golf 83 8 3 6

Kick 100

Lift 100

Ride 4 63 | 21 13

Run 4 12 | 69 11 04

Skate 100

Sw-1 2 98

Sw-2 12 88

Walk 2 2 96

Fig.7. Confusion matrix on the UCF dataset. (%)
4. CONCLUSIONS

We have presented a new method to detect actions in video
by combining sparse appearance features and dense motion
features. Randomization of the channel selection in each
random tree is utilized to combine the two complementary
types of features, and linear classification is introduced to
grow each tree with high efficiency. Moreover, this
framework is suitable for combining high dimensional data
and the experiments show the efficiency.
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