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ABSTRACT

Despite its age the inspection of specular surfaces is still a
topic of ongoing research. While sensory approaches to in-
spect such surfaces based on deflectometry are increasingly
used in practice, the evaluation techniques using the acquired
signals (images and reconstruction results) are often not suf-
ficient. This work addresses the challenge of detecting de-
fects with different characteristics on specular surfaces by us-
ing robust multiscale detection and classification. In order
to process the signals obtained by deflectometry efficiently
in all relevant scales, a method for generating an optimized
biorthogonal wavelet filter bank with strong correlation to any
number of anomaly classes is proposed. The filter bank is op-
timized for each defect class to obtain a sparse scale space
representation. In addition a Bayesian classification approach
is presented to classify defects like dents and pimples directly
in the scale space.

Index Terms— Wavelet-Transform, Optimized filters,
Surface topography, Automatic optical inspection

1. INTRODUCTION

We present a new method to evaluate measurements of spec-
ular surfaces obtained using deflectometric methods. The
main idea is based on the decomposition of a given signal
into different scales with optimized wavelet filter banks. The
wavelet coefficients from these filter banks are multiscale
features which match defects occurring in different sizes. In
order to gain better classification results these biorthogonal
wavelet filters are optimized for each defect class. Using this
optimized filter bank a stationary wavelet transform is used
to build a wavelet packet decomposition.

Previous approaches for defect detection on specular sur-
faces didn’t use optimized wavelets. Furthermore no wavelet
coefficients were used directly for classification which led
to more complicated classifiers. Most of the related work
processed single camera images of the surface, while only
a few used deflectometric methods. Zhang et al. [1] used
the wavelet transform for a smoothing of images taken from
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a specular surface. The classification was done by a sup-
port vector machine (SVM) and based on features taken
from spectral measures calculated from a Fourier transform.
Fargione et al. [2] used a neural network classifier and some
simple features extracted from regions given by an image seg-
mentation. Ghorai et al. [3] compared an SVM and VVRKFA
(vector-valued regularized kernel function approximation)
classifier with features extracted from a discrete wavelet
transform (DWT) with Haar-, Daubechies-, Bior- and Multi-
wavelets. They divided the image into small square regions
and used the DWT to calculate the energy in each scale which
in turn was used to classify each region. Jiang and Blunt [4]
used a stationary wavelet transform in combination with com-
plex biorthogonal wavelets. This increased redundancy led to
a better shift and rotation invariance for surface topographies.
Li [5] used a DWT as preprocessing to highlight defects and
an SVM to classify regions based on a blob analysis with
several extracted features like the area or the compactness
of the blobs. Burla et al. [6] and Zheng et al. [7] used ge-
netic algorithms instead of a classifier to adopt the detection
to several defect classes. Rosenboom et al. [8] studied the
aptitude of several wavelet families for defect detection on
deflectometric measurements.

In contrary our focus lies on the features calculated by
matched wavelet filter banks. We improve the classifica-
tion results compared to standard wavelets like biorthogonal
spline wavelets as proposed by Cohen et al. [9]. The clas-
sifier is intentionally kept simple to understand the process.
The paper is organized as follows: in Section 2 and 3 the
related work as well as the fundamentals of deflectometry
and wavelet theory are introduced. The new method is pre-
sented in Section 4 and 5. In Section 6 an application of the
new method and classification results are shown. Finally a
conclusion is made in Section 7.

2. FUNDAMENTALS OF DEFLECTOMETRY

The challenges when inspecting specular surfaces differ from
the challenges on non-reflective surfaces. First of all it’s not
possible to project any patterns onto the surface and observe
them directly. Deflectometric methods are applicable because
they exploit the specularity of the surface. The objective of

2405978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



the further evaluation depends on the application. If the ob-
jective is to find functional or aesthetic defects, the function
of the specular object or the perception of a user respectively
has to be considered. For these applications the optical aber-
rations caused by the surface curvature are more important
than the absolute coordinate of each point on the surface. Due
to the measurement principle of deflectometry it is especially
sensitive to the surface curvature and therefore better suited
for those problems. The measurement system consists of a
camera with image plane I , a specular surface S and a screen
L arranged in a triangular setup. On the screen sinus patterns
in horizontal and vertical directions for phase shifting meth-
ods are displayed. The camera observes a distorted pattern
of the screen over the specular surface. By observing a se-
quence of patterns, viewing rays from the camera plane PI

can be uniquely assigned to points on the screen PL:

l : PI 7→ PL, l[u, v] = (xL, yL). (1)

This mapping l is called deflectometric registration. Without
knowing the distance between the camera and the surface it
is impossible to unambiguously reconstruct the surface from
the deflectometric registration. Balzer [10] showed two ap-
proaches to obtain additional regularizing information of the
surface that lead to a unique reconstruction. An overview
of several regularizing methods for deflectometry is given by
Werling et al. [11]. In the following, we assume that a surface
S(m,n) is obtained as result of the deflectometric reconstruc-
tion:

S(m,n) = z, with (m,n) ∈ N2, z ∈ R. (2)

While many different defects can appear on the surface, most
of them have a characteristic shape. The size of defects
ranges from very small to large, but their shape remains for
each class. For this reason wavelets should be an appropiate
method to detect and classify these defects.

3. WAVELETS AND OPTIMIZED WAVELETS

3.1. Wavelet transform and filter bank

For a given signal s(x) and a set of band-pass wavelet func-
tions ψi(x), i ∈ N and low-pass scaling functions φi(x),
i ∈ N, a continuous wavelet transform will analyze the signal
with the corresponding basis, which is established by transla-
tion k and dilation j of the wavelets {ψj,k(x) | j ∈ R+, k ∈
R} and scaling functions {φj,k(x) | j ∈ R+, k ∈ R}. The
detail coefficients of the wavelet transform are calculated as

dij,k = 〈s(x), ψi
j,k(x)〉, ψi

j,k(x) = 2−j/2ψi(2−jx− k) (3)

and the approximation coefficients are calculated as

aij,k = 〈s(x), φij,k(x)〉, φij,k(x) = 2−j/2φi(2−jx− k). (4)

With respect to regularity conditions, continuous wavelets
and scaling functions can be converted to a discrete filter
bank [12].

3.2. Optimizing wavelets for classification purposes

The idea of optimizing the wavelet basis for a given prob-
lem and then classifying the coefficients has been discussed
by other authors before. Szu et al. [13] optimized the dilation
and translation parameters for the Morlet wavelet, which were
used by an artificial neuronal network classifier. For feature
extraction from near-infrared data Mallet et al. [14] optimized
the wavelet filter coefficients by maximizing a chosen dis-
criminant criterion between classes with respect to conditions
for orthogonality and regularity of filters. Maitrot et al. [15]
applied two new methods to parametrize the mother wavelet:
one for orthogonal and one for semiorthogonal wavelets. In
the case of orthogonal wavelets only the coefficients of the
scaling filter h need to be defined. In the case of semiorthog-
onal wavelets, a new wavelet ψ is optimized as a linear com-
bination of a given wavelet ψ0 with an admissible sequence p:
ψ = p∗ψ0. Quellec et al. [16] used the popular lifting scheme
framework introduced by Sweldens [17] to find the optimized
wavelet basis for content-based image retrieval in a medical
database. With matched wavelet bases a signature character-
izing the distribution of wavelet coefficients in each subband
of the decomposition was built. These signatures were used
for image classification.

The procedure for designing a biorthogonal wavelet filter
bank presented in this paper is mainly based on the concept
introduced by Greiner [18]. He showed a method for gener-
ating a texture-matched FIR-filter bank for both orthogonal
and biorthogonal filter banks. In contrast to Greiner we use
the stationary wavelet transform introduced by Holschneider
et al. [19] which yields a better localization of defects. From
the wavelet decomposing tree, coefficients on different nodes
are chosen as feature for the classifier. This concept differs
from the optimization methods presented above.

4. OPTIMIZING WAVELETS FOR SURFACE DATA

The main idea of this optimization method is to approximate
each defect class and use it as basis to design a wavelet filter
bank consisting of a matched band-pass filter for each class
and the associated biorthogonal low-pass filter. First of all
for each defect class Ci on a given specular surface S a one-
dimensional curve to describe an average defect is extracted.
After normalization to

√
2, theN sampling points of the curve

define a filter h0 with length N .

4.1. Conditions for perfect reconstruction

The z-transform H1(z) of filter h1, which is biorthogonal
to h0, can be defined based on the condition for perfect re-
construction (PR) of filter banks. An M -channel filter bank
consists of M analysis filters Ht as well as M synthesis fil-
ters Gt. A signal s(n) can be analyzed by the filters Ht to
create decomposition coefficients. With the filters Gt these
coefficients can be used to construct a signal ŝ(n). In case
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of s(n) = z−n0 ∗ ŝ(n) the filter bank is called a filter bank
allowing perfect reconstruction [20]. Using an M -channel
filter bank, an analyzed signal will be perfectly reconstructed
from its wavelet coefficients if the determinant ∆P (z) of the
polyphase-matrix P (z) of the filters ht (t = 0, ..,M − 1)
consists of only a single term z−n0 [18]. P (z) has the form:

Pij(z) = z−jHij(z
M ). (5)

Here Hij(z
M ) is the jth polyphase component of the ith fil-

ter [20]. Its determinant ∆P (z) can be calculated as:

∆P (z) = c0z
−M M−1

2 + . . .+ cN−Mz
−[MN−M M+1

2 ], (6)

with the constants cm, m = 0, . . . , N −M .

4.2. Quality criteria

For an M -channel filter bank consisting of M − 1 filters ht,
(t = 0, . . . ,M − 2), a filter hM−1 which is biorthogonal
to all ht is constructed. In order to match the biorthogonal
wavelet filter bank to a given defect class, a quality criterion
Q is defined as Euclidean distance between the filter hi of the
defect class Ci and the filter to be constructed hM−1:

Q = ‖hi − hM−1‖2. (7)

By maximizing the quality criterion Q the filter hM−1 will
be optimized to be as different from the given defect class as
possible. Due to the condition for PR above all the constants
cj in (6) except one need to be set to zero. The constants
cj are weighted sums of coefficients of the filter hM−1 to be
constructed:

cj =

N−1∑
n=0

amnhM−1(n). (8)

The construction of hM−1 can thus be considered as opti-
mizing quality criterion Q under the constraint that the con-
dition for PR is fulfilled. As a linear system, the set of (N −
M) equations cj

!
= 0, which contain the filter coefficients

hM−1(n), (n = 0, . . . , N − 1), is optimized with respect to
Q. In order to solve this optimization problem a Lagrange
function with Lagrange multiplier λ is defined as:

L(hM−1,λ) =
1

2
Q− λT [AhM−1 − 0]. (9)

The optimum can be found by solving the derivation equa-
tions:

∇hM−1,λL(hM−1,λ)
!
= 0. (10)

This way the coefficients of filter hM−1, which are biorthog-
onal to given filters ht (t = 0, ...,M − 2), are defined.

After the coefficients of all filters ht are defined, a filter
bank for the stationary wavelet transform is created based on
these filters. Each surface is analyzed with a filter bank which
results in a wavelet packet tree. Each coefficient node dk is
numbered consecutively as shown in Figure 1 for the case of
a 3-channel filter bank in 2 scales.

Fig. 1. Wavelet packet tree in case of a 3-channel filter bank.

5. CLASSIFICATION OF DEFECTS

To classify each point on the surface a method to extract fea-
tures and a classifier are needed. The feature set d for a point
(m,n) on the surface S is given by selected coefficients at the
same point dk(m,n) from the nodes dk of the wavelet packet
tree. The coefficients are calculated as described above with
M filters in up to l scales.

d(m,n) ⊆ {d1(m,n), . . . , dM+M2+...+M l(m,n)} . (11)

For the classification a maximum a posteriori decision is
made for each point on the surface separately. By defining
the parameter vectors µi and σi as mean and standard de-
viation of each coefficient in class Ci for all selected nodes,
the probability for a feature vector d belonging to class Ci is
determined by Bayes’ rule:

p(µi,σi|d) =
p(d|µi,σi) p(µi,σi)

p(d)
. (12)

Tests have shown that the coefficients can often be assumed as
Laplace distributed. In consequence the likelihood for class
Ci is modelled as product of univariate Laplace distributions:

p(d|µi,σi) =
∏
k

1

σi,k
√

2π
exp

(
−1

2

|dk − µi,k|
σ2
i,k

)
. (13)

The parameters µi and σi for each class Ci are learned with
a training set for each class. The prior is chosen as being
uniformly distributed, but this could be changed in practice.
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Fig. 2. Curve of a dent.

(a) dent filter (b) biorthogonal dent filter

Fig. 3. Impulse responses of a dent filter.

6. RESULTS

In order to demonstrate how this new method improves the
classification rate, deflectometry data from several curved
lacquered surfaces with many large dents and small pimples
were analyzed. Since dents and pimples are the most com-
mon defects on our lacquered surfaces, the experiment was
performed using these two classes. Additionally each surface
has uneven formations, called orange peel, which results in
a high measurement noise and complicates the detection of
defects. In Figure 2 the 2D-curve of a dent taken from a
specular surface is shown. 8 sampling points were extracted
from the curve and then normalized to

√
2 to build a filter.

The impulse response of this filter together with the asso-
ciated biorthogonal wavelet filter, which was found by the
optimization method in Section 4, are shown in Figure 3.

The classification procedure described in Section 5 was
first performed with a biorthogonal spline wavelet 3.5. The
results given in Table 1 show moderate accuracy (percentage
of true classifications to all classifications) for the class dent
Cd and a low accuracy for the class pimple Cp, where only
a third of all defects was classified correctly. The reason for
this may be the different shape of pimples on the surface and
the shape of biorthogonal wavelet. Based on the filter design
method presented in Section 4, four filter banks were created:

• Two systems with 2 channels each: a 2-channel system
of the dent filter and its associated biorthogonal filter,
as well as a 2-channel system of the pimple filter and
its associated biorthogonal wavelet filter,

• A 3-channel system for the case of a filter, which is
biorthogonal to both dents and pimples,

accuracy
surface one surface two

standard wavelet Cd Cp Cd Cp

biorthogonal spline wavelet 3.5 88% 35% 96% 94%

M adapted selected nodes Cd Cp Cd Cp

2 Cd 1 90% 73% 99% 96%
2 Cd 1, 3 87% 75% 99% 96%
2 Cd 1, 3, 4 86% 75% 99% 95%
2 Cp 1 67% 78% 99% 97%
3 Cd, Cp 1, 2 86% 78% 99% 96%
3 Cd, Cp 1, 2, 4, 5, 7, 8 83% 78% 99% 95%
4 Cd, Cp 1, 2 84% 79% 99% 97%

Table 1. Comparison of the classification accuracy using a standard
wavelet and optimized wavelets for our classification method, the
classes dent Cd and pimple Cp and two specular surfaces.

• And a 4-channel system as a combination of the two
systems with 2-channels above.

An extract for the accuracy results of each class using the 4
filter bank systems above with chosen coefficients is shown in
Table 1. The nodes were numbered as in Figure 1. The results
show that a good accuracy can be achieved by using features
from the correlating filter of each class together with its asso-
ciated biorthogonal wavelet filter: on surface one up to 90%
for the class dent as well as 78% for the class pimple were
classified correctly. Compared to the classification with the
biorthogonal spline wavelet 3.5 there is a strong improvement
for the classification of pimples and a slight improvement for
the dents on surface one. On surface two the classification re-
sults of all wavelets are similar, but the classification of pim-
ples is slightly better using the correlated wavelet.

Using two 2-channel systems for the classification leads
to a similar accuracy as using one 3-channel system. The 4-
channel system doesn’t improve the results, so the 3-channel
system should be the best choice for efficiency reasons.

7. CONCLUSION

A novel method for the analysis of deflectometry signals ob-
tained from specular objects was presented. For each de-
fect class a defect filter and an associated biorthogonal filter
were constructed from sample points and were used to build
a biorthogonal wavelet filter bank. By means of these filter
banks different defect classes on specular objects can be clas-
sified. The accuracy rates using the optimized wavelets were
improved compared to classic biorthogonal wavelets.
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