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ABSTRACT

This paper addresses the challenge of recognizing dynamic textures
based on spatial-temporal descriptors. Dynamic textures are com-
posed of both spatial and temporal features. The histogram of local
binary pattern (LBP) has been used in dynamic texture recognition.
However, its performance is limited by the reliability issues of the
LBP histograms. In this paper, two learning-based approaches are
proposed to remove the unreliable information in LBP features by
utilizing Principal Histogram Analysis. Furthermore, a super his-
togram is proposed to improve the reliability of the LBP histograms.
The temporal information is partially transferred to the super his-
togram. The proposed approaches are evaluated on two widely used
benchmark databases: UCLA and Dyntex++ databases. Superior
performance is demonstrated compared with the state of the arts.

Index Terms— Local Binary Pattern, Dynamic Texture Recog-
nition, Super Histogram, Principal Histogram Analysis

1. INTRODUCTION

Dynamic textures (DT) are sequences of images of moving scenes
that exhibit certain stationarity properties in time [1, 2]. The dy-
namics of texture elements are statistically similar and temporally
stationary. The recognition of DT is challenging as it involves the
analysis of both the spatial appearance of static texture patterns and
temporal variations in appearance.

In many approaches [1, 2, 3, 4, 5], the global spatial-temporal
variations of a DT were modeled as a dynamic system. In [5],
Ravichandran et al. proposed to use a bag of LDSs to represent
DTs for view-invariant DT recognition. Most recently, Xu et al.
proposed to model DTs as dynamic systems with self-similarities
and to utilize dynamic fractal analysis for DT recognition [2]. All
those approaches emphasize on the temporal variations of DTs, but
may not be able to capture the local spatial appearance of DTs.

local binary patterns (LBP) 1 is a simple yet powerful local fea-
ture descriptor because of its robustness to illumination variation and
alignment error. Zhao et al. proposed volume local binary patterns
(VLBP) and LBP-TOP for DT recognition [6]. In [7], LBP and a
Pyramid of Histogram of Oriented Gradients (PHOG) were used to
represent the spatial texture information. However, the performance
of LBP is limited by the reliability issues. The problem mainly arises
from insufficient elements to construct the LBP histograms. Firstly,
patch-based LBP leads to fewer elements in the histogram of each
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1Unless otherwise states, LBP refers to LBP8,2.

patch. Secondly, the image is smooth in nature, and hence some
LBP patterns rarely appear in the histogram. The occurrence prob-
abilities of those rare patterns can not be reliably estimated. Lastly,
the image noise may cause reliability issue as well.

The reliability issues of the LBP histograms have been addressed
in literature. For Uniform-LBP (ULBP) [8], non-uniform patterns
are considered as rare and noisy patterns, and hence grouped into one
bin. The reliability issues of those non-uniform patterns are partially
solved. As LBP is sensitive to quantization noise, a tri-state local
ternary pattern (LTP) was proposed in [9]. However, the reliability
issues of the LBP histograms remain unsolved.

In this paper, two learning-based approaches are proposed to
tackle the reliability issues. As pointed out in [10, 11], PCA can
be used not only for dimension reduction, but more importantly to
remove the dimensions that are harmful to reliable classification. In
the proposed approaches, Principal Histogram Analysis (PHA) is ap-
plied on the covariance matrix of the LBP histograms of each patch
to remove the unreliable information residing in the LBP histograms.
The proposed approaches are different from [12, 13], in which PCA
is applied on the concatenated LBP feature vector. The dimension
of covariance matrix of the concatenated feature vector is so high
that it can not be reliably estimated. In contrast, for the proposed ap-
proaches, the covariance matrix is calculated on a patch-wise basis
and of much smaller size. Thus, it can be better estimated.

DT recognition largely relies on spatial information [7]. In ad-
dition, each frame of DTs is in general similar. Inspired by these, a
super histogram is constructed by averaging over all the frames along
temporal direction. The temporal information is partially transferred
to the super histogram. Compared with the approaches that the his-
tograms are compared on a frame-to-frame basis [7], the proposed
super histogram can better handle spatial-temporal variations in DTs.

The main contributions of this work are in two-fold. Firstly, we
identify the reliability issues of LBP features, and two approaches
based on Principal Histogram Analysis are proposed to remove un-
reliable information residing in LBP features. Secondly, the super
histogram is proposed to further improve the reliability of the LBP
histograms. The proposed approaches demonstrate superior perfor-
mance on UCLA and DynTex++ databases for DT recognition.

2. THE PROPOSED LEARNING-BASED LBP

For patch-based LBP, a LBP histogram is extracted from each patch
and all the histograms are concatenated to form the final feature vec-
tor. Due to the limited number of elements to construct the his-
tograms, those histograms cannot be reliably estimated. We uti-
lize Principal Histogram Analysis on the covariance matrix of the
LBP histograms to remove the unreliable information. The proposed
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learning-based LBP can be derived in a patch-independent manner
or a patch-dependent manner.

2.1. The Proposed Patch-Independent Learning-Based LBP

The block diagram for patch-independent learning-based LBP (PI-
LBP) is shown in Fig. 1. For the tightly cropped DTs, e.g. the
UCLA database [3, 4] and the DynTex++ database [7], the histogram
of each patch is similar to each other, and hence the patch locality
is not critical. The covariance matrices of different patches can be
summed up and the unreliable information in the LBP histograms
can be removed.

Fig. 1: Block diagram of PI-LBP. One unified projection matrix P

is obtained for all patches.

The proposed PI-LBP is derived by applying principal compo-
nent analysis on the LBP histograms. Let hi,j,k ∈ R

256 denote the
histogram of i-th patch of j-th image of k-th class. The total scatter
matrix is obtained as:

Σt =
∑

i

∑

j,k

(hi,j,k − µi)(hi,j,k − µi)
T
, (1)

where µi = 1

N

∑
j,k

hi,j,k is the mean histogram of i-th patch and
N is the total number of training samples. PCA is then applied on
Σt, e.g. Σt = ΦΛΦT . Eigenvectors Φm corresponding to m

largest eigenvalues are selected, and hi,j,k is projected to the feature
space as fi,j,k = ΦT

m(hi,j,k − µi).
Mahanalobis distance is shown to perform well on classification.

Thus, we normalize the feature vector by the inverse of the within-
class scatter matrix Σf

w. Σf
w is defined as:

Σ
f
w =

∑

i

∑

k

∑

j

(fi,j,k − µ
f

i,k)(fi,j,k − µ
f

i,k)T
, (2)

where µ
f

i,k = 1

Nk

∑
j
fi,j,k is the mean feature vector of i-th patch

of k-th class in the feature space and Nk is the number of samples for
k-th class. After performing PCA on Σf

w, e.g. Σf
w = ΦwΛwΦT

w,
the normalized feature vector for PI-LBP is obtained as:

gi,j,k = (ΦmΦwΛ
−0.5
w )T (hi,j,k − µi). (3)

Discriminant analysis can be applied to further reduce the di-
mensions. The between-class scatter matrix is calculated as:

Σ
g

b =
∑

i

∑

k

(µg

i,k − µ
g
i )(µ

g

i,k − µ
g
i )T

, (4)

where µ
g

i,k = 1

Nk

∑
j
gi,j,k, and µ

g
i = 1

c

∑
k

µ
g

i,k; c is the number

of class. Then, we apply PCA on Σ
g

b , e.g. Σ
g

b = ΦbΛbΦ
T
b . The

first t eigenvectors Φb,t corresponding to t leading eigenvalues are
selected and the feature vector by applying discriminant analysis is
obtained as:

ĝi,j,k = (ΦmΦwΛ
−0.5
w Φb,t)

T (hi,j,k − µi). (5)

Unless otherwise stated, 1-NN classifier with Chi-square dis-
tance measure is used for classification. Since gi,j,k or ĝi,j,k may
be negative, Chi-square distance is modified slightly as:

χ
2

w(x,y) =
∑

i,l

(xi,l − yi,l)
2

|xi,l| + |yi,l|
, (6)

where x,y are the concatenated LBP feature vectors of two samples;
xi,l and yi,l are l-th dimension of i-th patch.

2.2. The Proposed Patch-dependent Learning-Based LBP

For PI-LBP, patch locality is suppressed since a common projec-
tion matrix is obtained for all the patches. However, for those non-
cropped DTs, e.g. DynTex database [14], the histogram of one patch
may be significantly different from the other. In such a scenario,
a patch-dependent learning-based LBP (PD-LBP) can be derived to
extract the intrinsic property of each patch. The block diagram for
PD-LBP is shown in Fig. 2.

Fig. 2: Block diagram of patch-dependent learning-based LBP. In
order to capture the intrinsic property of different patches, one pro-
jection matrix Pi is built for each patch.

For PD-LBP, the total scatter matrix for i-th patch is defined as:

Σ̃i =
∑

j,k

(hi,j,k − µi)(hi,j,k − µi)
T
. (7)

PCA is then applied on Σ̃i, e.g. Σ̃i = Φ̃iΛ̃iΦ̃
T
i . We se-

lect m̃ eigenvectors Φ̃i,m̃ corresponding to m̃ largest eigenvalues
and project the histogram of i-th patch hi,j,k to the feature space as
f̃i,j,k = Φ̃T

i,m̃(hi,j,k − µi). The rest procedures are similar to those
of PI-LBP. Finally, one projection matrix is built for each patch.

2.3. Comparisons with Other Approaches

Both the proposed PI-LBP/PD-LBP and Uniform-LBP [8] aim to re-
duce the feature dimensions. In ULBP, unreliable non-uniform pat-
terns are grouped into one bin, but discriminative information may
be lost during grouping. In addition, some non-uniform patterns
may have higher occurrence frequency than the uniform patterns,
and hence may carry more information than the uniform patterns.
By learning a projection matrix for dimension reduction based on a
large amount of training samples, the proposed approaches can bet-
ter remove the unreliable information in the LBP histograms.

Compared with PCA on the concatenated LBP features (PCA-
cLBP) [12, 13], for the proposed approaches the covariance matrices
of the LBP histograms can be better estimated. If the image is di-
vided into I patches, we have in total NI samples to estimate the
covariance matrix of 256× 256 dimensions for PI-LBP, whereas for
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PCA-cLBP we have only N samples to estimate the covariance ma-
trix of 256I×256I dimensions. Much more samples are available to
estimate the covariance matrix of much smaller size for PI-LBP, and
hence its covariance matrix can be better estimated. For PD-LBP,
we have N samples to estimate the covariance matrix of 256 × 256
dimensions for each patch. The reliability of its covariance matrix is
between PCA-cLBP and PI-LBP. However, compared with PI-LBP,
the patch locality is preserved for PD-LBP and the projection matrix
can better capture the intrinsic property of each patch.

3. THE PROPOSED SUPER HISTOGRAM

DT recognition largely relies on the spatial information [7]. For
example, on UCLA 50-class classification problem, a recognition
rate of 90% is achieved by utilizing spatial LBP alone. It is con-
sistent with the human perception on DTs. Given only one frame
per DT, human can easily differentiate DTs. The temporal informa-
tion serves as further verification. In general, each frame of DT is
spatially similar. Inspired by these, a super histogram is proposed.

Let hi,p ∈ R
256 denote the histogram of i-th patch of p-th

frame. The super histogram hs
i for i-th patch of this sequence is:

h
s
i =

1

P

∑

p

hi,p, (8)

where P is the number of frames in this sequence. The proposed
super histogram of LBP mainly captures the local spatial appearance
of DTs. The temporal information is partially transferred into the
super histogram, as the super histogram is obtained by averaging the
histograms over all frames.

The proposed super histogram can better handle the spatial-
temporal variations in DTs compared with the approach that the
histograms are compared on a frame-to-frame basis [7]. The his-
togram based on each frame is less reliable as it has fewer elements
than the super histogram. In addition, due to the temporal variations,
it is difficult to match two DTs on a frame-to-frame basis.

The proposed super histogram is also superior to the approach
that a LBP histogram is extracted on the super image obtained by av-
eraging over all the frames. For the super image, we end up with only
one frame. The histogram built upon the super image has a limited
number of elements only, and hence it is still not reliably estimated.
In the proposed approach, the image local structures are extracted
in each frame, and those structure patterns are used to construct the
super histogram. In contrast, those image local structures are lost
when constructing the LBP histogram of super image. To illustrate
the difference between those two approaches, we plot them for the
first patch of the first DT in the UCLA database as shown in Fig. 3.
Each frame is divided into 3 × 3 = 9 patches. For the super his-
togram, the occurrence probabilities of all the LBP patterns are well
estimated. However, for the histogram of super image, the occur-
rence probabilities of many patterns are zero as shown in Fig. 3(b).

4. EXPERIMENTS

The proposed PI-LBP and PD-LBP are compared with LBP, ULBP [8],
PCA-cLBP [12, 13] as well as the state of the arts [2, 5, 7] on the
UCLA database [3, 4] and the DynTex++ database [7]. Unless oth-
erwise stated, the LBP histograms of all the frames are averaged
along the temporal direction to produce the super histogram. LBP,
ULBP, PCA-cLBP, PI-LBP and PD-LBP are all based on the su-
per histogram. The optimal dimensions for PI-LBP/PD-LBP are
determined in a pretrial.
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(b) Histogram of supper image

Fig. 3: The super histogram and the histogram of super image.

4.1. Recognition on the UCLA Database

The UCLA DT database [3, 4] has been widely used as a bench-
mark dataset [2, 5, 7]. It consists of 50 classes of DTs, each with
4 sequences. Each sequence contains 75 frames of 48 × 48 pixels.
Those 50 classes can be further grouped into 9 classes as they con-
tain the same DT at different viewpoints. 9-class classification on
the UCLA database is more challenging [5, 7]. Our initial exper-
iment shows that on the UCLA database, the recognition rates are
insensitive to the choice of the number of patches. Here, each frame
is divided into 3 × 3 = 9 patches.

For 50-class classification, we gradually increase the number of
frames of the testing sequences, e.g. first frame, first two frames,
and etc. The LBP histograms of those frames are averaged along
temporal direction. For the training sequences, the histograms are
averaged over all the frames. We perform 4-fold cross validation as
in [2, 5, 7], and the average recognition rates are shown in Table 1.

Table 1: The recognition rates vs. the number of frames in the test
sequence.

Num of
Frame

LBP ULBP PCA-
cLBP

PI-
LBP

PD-
LBP

1 97.5% 95.0% 92.0% 97.5% 97.0%
2 97.5% 94.5% 93.5% 98.0% 98.0%
5 96.5% 95.5% 95.0% 98.0% 97.0%
10 97.0% 96.5% 95.0% 98.0% 98.0%
20 98.0% 97.0% 97.5% 99.5% 97.5%
40 98.0% 98.0% 99.0% 99.0% 99.0%
75 99.5% 99.5% 99.5% 100.0% 100.0%

It is interesting to note that by utilizing the first frame only, a
high recognition rate is achieved, e.g. 97.5% for PI-LBP and 97.0%
for PD-LBP. It is consistent with the human perception on DTs that
DT recognition largely relies on the spatial information. Further-
more, it enables fast searching or indexing of DTs as one frame per
DT only is required. When all the frames are utilized, a recognition
rate of 100% is achieved for the proposed PI-LBP and PD-LBP.

For 9-class classification, we adopt the same experimental setup
as in [2, 7]. The experiment is repeated 20 times. In each trial, each
class is randomly bisected. Half are used as the training and gallery
set, and the other half are used as the testing set.

The results are summarized in Table 2. A slightly higher recog-
nition rate is achieved for the proposed PI-LBP and PD-LBP com-
pared with LBP, ULBP and PCA-cLBP. The current best recogni-
tion rate is 100.0% for 50-class classification and 97.5% for 9-class
classification [2]. The proposed PI-LBP and PD-LBP on super his-
togram achieve the same recognition rate of 100.0% for 50-class
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classification and the better recognition rate of 98.2% and 98.1%
for 9-class classification.

Table 2: The average recognition rates on the UCLA DT database
for 50-class and 9-class classification problems.

Method 50-Class 9-Class

Bag of dynamical systems [5] - 80.0%
DL-PEGASOS algorithm [7] 99.0% 95.6%
Dynamic Fractal Analysis [2] 100.0% 97.5%
LBP + super histogram 99.5% 97.9%
ULBP + super histogram 99.5% 97.8%
PCA-cLBP + super histogram 99.5% 97.7%
PI-LBP + super histogram 100.0% 98.2%
PD-LBP + super histogram 100.0% 98.1%

4.2. Recognition on the DynTex++ Database

In order to provide a richer benchmark for DT recognition, the Dyn-
Tex database [14] is re-organized as the DynTex++ database in [7]. It
consists of 36 classes of DTs. Each class contains 100 sequences of
size 50×50×50. We use the same experimental setting as in [2, 7].
For each trial, 50 sequences are randomly selected from each class
as the training and gallery set, and the other 50 sequences are used in
testing. The experiment is repeated 20 times. Our initial experiment
shows that LBP8,1 offers better performance, and hence it is used
on this dataset.

The average recognition rates vs. Np are shown in Fig. 4. The
recognition rates decrease as Np increases. The DynTex++ database
is built from tightly cropped sequences, and only one DT is present
in each sequence. The image patches are similar to each other, and
hence the patch locality is less important. By dividing the image into
patches, the histogram will has less element, and hence less reliable.
The highest recognition rates are achieved when Np = 1 for the
DynTex++ dataset. When Np = 1, PCA-cLBP is identical to PI-
LBP and PD-LBP.
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Fig. 4: The average recognition rates of LBP, ULBP, PCA-cLBP,
PI-LBP and PD-LBP vs. Np on the DynTex++ database.

The proposed PI-LBP and PD-LBP are further compared with
the state of the arts. The current best recognition rate is 89.9%
for DFS [2]. Before that, the recognition rate is 63.7% for DL-
PEGASOS [7]. As shown in Table 3, the proposed PI-LBP/PD-LBP
on super histogram significantly improve the recognition rate from
89.9% to 91.9%. If RBF SVM is used for classification, the recog-
nition rate further increases to 92.4%.

Table 3: The average recognition rates on the DynTex++ DT
database.

Method Recognition Rate

DL-PEGASOS [7] 63.7%
Dynamic fractal analysis (DFS) [2] 89.9%
LBP + super histogram + 1-NN 89.4%
ULBP + super histogram + 1-NN 88.5%
PCA-cLBP/PI-LBP/PD-LBP + super his-
togram + 1-NN

91.9%

PCA-cLBP/PI-LBP/PD-LBP + super his-
togram + RBF SVM

92.4%

The recognition rates of each class for the proposed approaches
and DFS approach [2] are shown in Fig. 5. In [2], mainly the tem-
poral variations are exploited, whereas in the proposed approach,
mainly the spatial variations are exploited. Comparing those two,
the recognition rate of each class is significantly different, which
indicates that those two approaches are capable to handle different
DTs. It will be advantageous to fuse those two approaches.
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Fig. 5: The recognition rates of the proposed approach and DFS [2]
for each class of the DynTex++ database.

5. CONCLUSION

This paper addresses the challenge of recognizing dynamic textures
based on LBP features. We identify the reliability issues of LBP
features. Two learning-based approaches, i.e. PI-LBP and PD-LBP,
are proposed to tackle the problem by utilizing Principal Histogram
Analysis. The super histogram is proposed to further improve the
reliability. The temporal information is partially transferred into the
super histogram. The proposed learning approaches on the super
histogram outperform LBP, ULBP and PCA-cLBP on UCLA and
Dyntex++ databases. Compared with the state of the arts, on 9-class
classification of the UCLA database, the proposed PI-LBP/PD-LBP
increase the recognition rate from 97.5% to 98.2% and 98.1%, re-
spectively. On the DynTex++ database, the proposed PI-LBP/PD-
LBP increase the recognition rate from 89.9% to 92.4%.
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