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ABSTRACT

Local image descriptors are one of the key components in
many computer vision applications. Recently, binary de-
scriptors have received increasing interest of the community
for its efficiency and low memory cost. The similarity of
binary descriptors is measured by Hamming distance which
has equal emphasis on all elements of binary descriptors.
This paper improves the performance of binary descriptors
by learning a weighted Hamming distance for binary de-
scriptors with larger weights assigned to more discriminative
elements. What is more, the weighted Hamming distance can
be computed as fast as the Hamming distance on the basis of a
pre-computed look-up-table. Therefore, the proposed method
improves the matching performance of binary descriptors
without sacrificing matching speed. Experimental results on
two popular binary descriptors (BRIEF [1] and FREAK [2])
validate the effectiveness of the proposed method.

Index Terms— Binary descriptor, Local descriptor, Im-
age matching, Weighted Hamming distance

1. INTRODUCTION

With its success in many computer vision applications, lo-
cal image descriptor has developed fast in the past decade.
While the design of local descriptors is mainly focused on
robustness in the past, the focus is moving to speed and stor-
age with moderate robustness along with the increasing re-
quirement for applying computer vision algorithms on em-
bedded devices, such as mobile phones. However, traditional
local descriptors are usually with large memory cost thus can
not be extracted and matched in real time, such as SIFT [3],
MROGH [4], LIOP [5], KAZE [6] to name a few. Therefore,
these descriptors can not be used in mobile applications de-
spite of their robustness. In order to fulfill the requirements
of low memory cost and computational burden encountered
in embedded applications, binary descriptors are proposed re-
cently.

BRIEF (Binary Robust Independent Elementary Fea-
ture) [1] is a pioneer of binary descriptors. It uses intensity
tests of randomly selected point pairs to construct local de-
scriptor for an image patch. BRIEF is fast to compute since

it only needs 512 comparisons for a 512 dimensional BRIEF
descriptor. Due to its binary property, BRIEF is with low
memory cost and can be fast matched by Hamming distance.
It has been applied successfully in SLAM with small rota-
tion and scale changes. One disadvantage of BRIEF is that
it is sensitive to in-plane rotation and scale changes. This
disadvantage severely limits its applicability. To alleviate this
problem, Rublee et al. [7] proposed ORB (Oriented Fast and
Rotated BRIEF), which detects FAST corners [8] in several
octaves in order to achieve scale invariance approximately
and selects robust binary tests for rotated patch. Therefore,
ORB is claimed to be robust to rotation and scale changes.
BRISK (Binary Robust Invariant Scalable Keypoints) [9] is
proposed for the same purpose as ORB by applying a scale-
space FAST-based detector [10], and a carefully designed
sampling patterns for brightness comparisons to construct
binary descriptor as well as for orientation estimation. In
BRISK, point pairs are generated by the predefined sampling
patterns and they are divided into short-distance and long-
distance subsets. The long-distance subset is used to estimate
orientation so as to obtain rotation invariance, while the short-
distance subset is used to construct BRISK descriptor on the
rotated image patch. Inspired by the human visual system,
Alahi et al. [2] proposed the FREAK (Fast Retina Keypoint)
descriptor.

While much work is focused on designing binary descrip-
tors, rare work is conducted on matching binary descriptors.
A key advantage of binary descriptors is that the Hamming
distance can replace the widely used Euclidean distance when
matching descriptors. However, it imposes equal emphases
on all elements of a binary descriptor by using the Hamming
distance. Unfortunately, it is less likely that all elements of
a binary descriptor contribute equally to the robustness and
distinctiveness of this descriptor.

Contributions: In this paper, we propose to use a weighted
Hamming distance for visual matching. By assigning larger
weights to more important elements, the weighted Ham-
ming distance is expected to better separate matching image
patches from non-matching image patches. To this end,
weights are learnt from training samples by minimizing a
margin-based empirical loss. Meanwhile, in order to com-
pute the weighted Hamming distance efficiently, a look-up-
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Fig. 1. The learnt weights for (a) BRIEF and (b) FREAK.
The box represents an image patch. Each line in the box links
a pair of points used for intensity test with its color indicating
weight.

table based strategy is proposed. With such a strategy, the
weighted Hamming distance can be computed as fast as
Hamming distance with only several k-bytes memories addi-
tional for storing look-up-tables. To show the effectiveness
of the proposed method, we have learnt the weighted Ham-
ming distance for two popular binary descriptors, BRIEF [1]
and FREAK [2], respectively. The learnt weights of them
are shown in Fig. 1. Experimental evaluation on the Patch
Dataset [11] demonstrates that the performance of binary de-
scriptors is significantly improved by the weighted Hamming
distance.

The rest of this paper is organized as follows. Section 2
describes the objective for learning weighted Hamming dis-
tance. Then, a fast method to compute the weighted Ham-
ming distance is elaborated in Section 3. Experiments are
reported in Section 4, followed by a brief introduction of the
related work in Section 5. Finally, we conclude this paper in
Section 6.

2. LEARNING WEIGHTED HAMMING DISTANCE

Given two image patches x and y, denote their binary descrip-
tors as b(x) ∈ {0, 1}n and b(y) ∈ {0, 1}n respectively. Then
their Hamming distance is computed by:

Ham(x, y) =

n∑
i=1

bi(x)⊗ bi(y) (1)

in which n is the dimension of binary descriptor and⊗ stands
for bitwise XOR operation.

According to the definition of Hamming distance, it is
clear that all the elements of a binary descriptor contribute
equally to the distance. However, the distinctiveness of
each element is usually different. Therefore, assigning equal
weights to all elements may degrade the performance of bi-
nary descriptors. A more reasonable way is to learn different
weights for different elements of binary descriptors. Here, we
generalize the Hamming distance to the weighted Hamming

distance, defined as:

WHam(x, y) =
n∑

i=1

wi(bi(x)⊗ bi(y)) (2)

where wi is the weight of the ith element. The goal of this
paper is to learn wi, i = 1, 2, · · · , n for a given type of binary
descriptor (e.g. BRIEF) based on a set of training samples.

By assigning different weights to binary codes, what we
expect is to obtain a distance space in which the distances of
matching patches are less than those of non-matching patches.
It is noted that in the domain of wide-baseline image match-
ing, the absolute value of feature descriptors’ distance is less
significant than the relative ranking. This is because that fea-
ture matching is usually obtained by searching the nearest
neighbor in the descriptor space. In this case, distance ranking
is more important. Therefore, our objective for learning the
optimal weights in Equ. (2) is a margin-based one. Specif-
ically, we impose the following constraint on the weighted
Hamming distances of training samples:

WHam(Xi) < WHam(Xj)− 1,∀(Xi ∈ P, Xj ∈ N )

in which WHam(Xi) represents WHam(xi, yi), while P
and N denote the training sets of matching pairs and non-
matching pairs respectively. The constraint presented in (3)
means that in the weighted Hamming space, the distances of
matching pairs are less than those of non-matching pairs by
at least one unit. Consequently, we obtain the empirical loss
on a given training set:

loss(w) =
∑
Xi∈P

∑
Xj∈N

max{WHam(Xi)−WHam(Xj) + 1, 0}

Therefore, our optimization problem can be written as:

w = argmin
w

(loss(w) + λR(w)) (3)

in which R(w) is a regularized term and λ is a parameter
trading-off between the empirical loss and regularization. We
use L2 norm for regularization, i.e., R(w) = ‖w‖22 and set
λ to be 1 in our experiments. Since our objective function is
differentiable, the optimization problem presented in Equ. (3)
can be easily solve by the gradient descent algorithm.

3. FAST COMPUTATION OF THE WEIGHTED
HAMMING DISTANCE

The most attractive property of Hamming distance is that it
can be fast computed in modern computers by bitwise XOR
operations. For the weighted Hamming distance, it will take
much more time to compute (cf. Table 1). Therefore, we pro-
pose a strategy for fast computation of the weighted Ham-
ming distance by look-up-tables. It can be computed as fast
as Hamming distance, with only additional several addressing
operations.
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Fig. 2. Fast computation of the weighted Hamming distance
with look-up-tables.

The computation procedure of the weighted Hamming
distance is shown in Fig. 2. Firstly, the input binary descrip-
tors x and y are separated into several bytes (if their dimen-
sionality can not be divided by 8, fill zeros in high positions.),
denoted as (x1, x2, · · · , xn) and (y1, y2, · · · , yn); secondly,
for each separated byte xi and yi, bitwise XOR is conducted
to obtain a byte-type value di; thirdly, for a byte-type value
di ∈ [0, 255], accessing the ith look-up-table with the address
di and getting a float value vi; finally, summing over all the
obtained float values as the weighted Hamming distance of x
and y, i.e., WHam(x, y) = v1 + v2 + · · · + vn. Therefore,
by using look-up-tables, the computation of the weighted
Hamming distance only requires additional n/8 addressing
operations than the computation of Hamming distance.

From the above description of the look-up-table based
computation, n/8 look-up-tables are required, each of which
has 28 = 256 elements. They are constructed by summing
the corresponding weights. Take the 5th element (its address
is 0x00000101) in the ith table for example, its value is wi1+
wi3 and wij = w8×(i−1)+j . Note that for each look-up-
table, only 256 × 4 = 1024 bytes storage is required. Con-
sequently, comparing to Hamming distance, there are only
n/8 k-bytes additional memories required in computing the
weighted Hamming distance.

4. EXPERIMENTS

In order to show the effectiveness of the weighted Hamming
distance for binary descriptors, we have conducted experi-
ments on the Patch Dataset [11]. Two popular binary descrip-
tors are used in our experiments: BRIEF [1] and FREAK [2].
BRIEF is the pioneer binary descriptor in the literature used
for real-time image matching while FREAK is the most recent
one. We used the implementations provided on the authors’
websites.

The Patch Dataset contains up to 500k image patch pairs

for each of the three scenes, namely Liberty, Notre Dame
and Yosemite. For each scene, there are equal numbers of
matching pairs and non-matching pairs. These patch pairs
were sampled around interest points and the correspondences
between patches were found by mapping between images
using stereo depth maps obtained by the Photo Tourism al-
gorithm [12] and Michael Goesele’s multi-view stereo algo-
rithm [13]. These patches are scale and rotation normalized
and of size 64× 64.

4.1. Performance Evaluation

To show the effectiveness of our method, we learnt the
weighted Hamming distance on Liberty, Notre Dame and
Yosemite subsets respectively, and then tested its performance
on the other subsets. Therefore, there are totally 6 train/test
configurations in our evaluation. We used 10k samples for
training and 100k samples for testing with equal number of
matching and non-matching pairs in each configuration. Re-
sults are reported in terms of ROC curves which are obtained
by varying a threshold on the distances between patch pairs
in the descriptor space. Fig. 3 shows the experimental results.
It is clear to see that the performance of BRIEF and FREAK
is significantly improved with the weighted Hamming dis-
tance. Since the point pairs used for intensity comparisons
in FREAK have been optimized while BRIEF uses randomly
selected point pairs, the improvement obtained with FREAK
is not as significant as that obtained with BRIEF.

4.2. Timing tests

In Section 3, we have theoretically analyzed complexity of
the proposed strategy for fast computation of the weighted
Hamming distance. To validate its efficiency, we have con-
ducted speed tests on a laptop with an Intel Core 3.1GHz CPU
and 4GB memories. For BRIEF and FREAK, we calculated
Hamming distance and the weighted Hamming distance on
100,000 patch pairs and recorded the corresponding times re-
spectively. The tests are repeated 1000 times with the average
results listed in Table 1. As expected, the matching times for
BRIEF and FREAK are identical1 since they have the same
dimensions. The computation time of the weighted Hamming
distance is slightly longer than that of Hamming distance due
to the additional address accessing operations for computing
the weighted Hamming distance. Table 1 also tabulates the
computation time of the weighted Hamming distance without
the proposed strategy. It is nearly 20 times longer than that
using the proposed strategy, demonstrating the efficiency of
the proposed strategy for calculating the weighted Hamming
distance.

1The slightly difference between the timing results of BRIEF and FREAK
is due to system error.
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Fig. 3. Experimental results across all splits of training and testing sets. W-BRIEF and W-FREAK denote results obtained in
the weighted Hamming distance learnt by BRIEF and FREAK respectively. There are 10k samples used for training and 100k
samples used for testing.

Table 1. Average matching times (ns) for BRIEF and FREAK
with Hamming distance (Ham) and the weighted Hamming
distance (WHam) respectively. For the purpose of compari-
son, the time for directly calculating the weighted Hamming
distances is also included. LUT stands for the proposed look-
up-table strategy.

BRIEF Ham WHam (LUT) WHam
49.3 56.5 970.8

FREAK Ham WHam (LUT) WHam
49.2 57.0 971.1

5. RELATED WORK

Machine learning has been applied to improve performance
of local descriptor on both large scale descriptor match-
ing [14] and object retrieval [15]. Shakhnarovich [16] pro-
posed BoostPro to find a set of projections for SIFT that are
sensitive to similarity pairs used for training. Cai et al. [17]
applied linear discriminative projections to SIFT to learn
descriptors with low dimensionality. Babenko et al. [18]
treated correspondence problem as a classification problem
and used boosting to train the classifier. Ozuysal et al. [19]
proposed random ferns and to train a Semi-Naive Bayesian
Classifier to recognize keypoints directly from their local
patches. Locality Sensitive Hashing (LSH) [20] and Spectral
Hash (SH) [21, 22] have been proposed to find an efficient
binary representation of high-dimensional data maintaining

their similarities in the new Hamming space. In contrast to
these approaches, our work focuses on binary descriptors and
utilizes metric learning to learn a weighted Hamming distance
for better matching performance. Meanwhile, a look-up-table
strategy is proposed for computing the weighted Hamming
distance without sacrificing the computational efficiency of
Hamming distance.

6. CONCLUSION

This paper proposes the weighted Hamming distance to im-
prove the matching performance of binary descriptors while
preserving its advantage of fast computation. The weighted
Hamming distance is learned by minimizing a margin-based
ranking loss such that distances of matching pairs are smaller
than distances of non-matching pairs by one unit at least. Ow-
ing to the proposed look-up-table based strategy, the weighted
Hamming distance can be computed as efficient as Hamming
distance. Experimental results have shown the effectiveness
of the proposed method.

7. ACKNOWLEDGEMENTS

This work is supported by the National Science Founda-
tion of China (61203277,61272394,61005013) and Tsinghua
National Laboratory for Information Science and Technol-
ogy (TNList) Cross-discipline Foundation.

2398



8. REFERENCES

[1] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski,
C. Strecha, and P. Fua, “BRIEF: Computing a local bi-
nary descriptor very fast,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 33, no. 7,
pp. 1281–1298, 2012.

[2] A. Alahi, R. Ortiz, and P. Vandergheynst, “FREAK: Fast
retina keypoint,” in International Conference on Com-
puter Vision and Pattern Recognition, 2012, pp. 510–
517.

[3] David Lowe, “Distinctive image features from scale-
invariant keypoints,” International Journal of Computer
Vision, vol. 60, no. 2, pp. 91–110, 2004.

[4] Bin Fan, Fuchao Wu, and Zhanyi Hu, “Aggregating gra-
dient distributions into intensity orders: A novel local
image descriptor,” in Internation Conference on Com-
puter Vision and Pattern Recognition, 2011, pp. 2377–
2384.

[5] Zhenhua Wang, Bin Fan, and Fuchao Wu, “Local in-
tensity order pattern for feature description,” in Interna-
tional Conference on Computer Vision, 2011, pp. 603–
610.

[6] P.F. Alcantarilla, A. Bartoli, and A. Davison, “KAZE
features,” in European Conference on Computer Vision,
2012, pp. 214–227.

[7] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski,
“ORB: an efficient alternative to SIFT or SURF,” in In-
ternational Conference on Computer Vision, 2011, pp.
2564–2571.

[8] Edward Rosten and Tom Drummond, “Machine learn-
ing for high-speed corner detection,” in European Con-
ference on Computer Vision, 2006, pp. 430–443.

[9] S. Leutenegger, M. Chli, and R. Siegwart, “BRISK: Bi-
nary robust invariant scalable keypoints,” in Interna-
tional Conference on Computer Vision, 2011, pp. 2548–
2555.

[10] Elmar Mair, Gregory D. Hager, Darius Burschka,
Michael Suppa, and Gerhard Hirzinger, “Adaptive and
generic corner detection based on the accelerated seg-
ment test,” in European Conference on Computer Vi-
sion, 2010, pp. 183–196.

[11] Matthew Brown, Gang Hua, and Simon Winder, “Dis-
criminative learning of local image descriptors,” IEEE
Transaction on Pattern Analysis and Machine Intelli-
gence, vol. 33, no. 1, pp. 43–57, 2011.

[12] Noah Snavely, Steven M. Seitz, and Richard Szeliski,
“Photo tourism: Exploring photo collections in 3D,”
ACM Transactions on Graphics (TOG), vol. 25, pp.
835–846, 2006.

[13] Michael Geosele, Noah Snavely, Brian Curless, Hugues
Hoppe, and Steven M. Seitz, “Multi-view stereo for
community photo collections,” in International Confer-
ence on Computer Vision, 2007.

[14] Christoph Strecha, Alexander M. Bronstein, Michael M.
Bronstein, and Pascal Fua, “LDAHash: Improved
matching with smaller descriptors,” IEEE Transaction
on Pattern Analysis and Machine Intelligence, vol. 34,
no. 1, pp. 66–78, 2012.

[15] James Philbin, Michael Isard, Josef Sivic, and Andrew
Zisserman, “Descriptor learning for efficient retrieval,”
in European Conference on Computer Vision, 2010, pp.
677–691.

[16] G. Shakhnarovich, “Learning task-specific similarity,”
PhD thesis, MIT, 2006.

[17] Hongping Cai, Krystian Mikolajczyk, and Jiri Matas,
“Learning linear discriminant projections for dimen-
sionality reduction of image descriptors,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
vol. 33, pp. 338–352, 2011.

[18] Boris Babenko, Piotr Dollr, and Serge Belongie, “Task
specific local region matching,” in International Con-
ference on Computer Vision, 2007.

[19] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua, “Fast
keypoint recognition using random ferns,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
vol. 32, no. 3, pp. 448–461, 2010.

[20] Aristides Gionis, Piotr Indyk, and Rajeev Motwani,
“Similarity search in high dimensions via hashing,” in
International Conference on Very Large Data Bases,
1999, pp. 518–529.

[21] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hash-
ing,” in Advances in Neural Information Processing Sys-
tems, 2009, pp. 1753–1760.

[22] Brian Kulis and Trevor Darrell, “Learning to hash with
binary reconstructive embeddings,” in Advances in Neu-
ral Information Processing Systems, 2009, pp. 1042–
1050.

2399


