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ABSTRACT
In this paper, we investigate the combination of hidden
Markov models and convolutional neural networks for hand-
written word recognition. The convolutional neural networks
have been successfully applied to various computer vision
tasks, including handwritten character recognition. In this
work, we show that they can replace Gaussian mixtures to
compute emission probabilities in hidden Markov models
(hybrid combination), or serve as feature extractor for a stan-
dard Gaussian HMM system (tandem combination). The
proposed systems outperform a basic HMM based on either
decorrelated pixels or handcrafted features. We validated
the approach on two publicly available databases, and we
report up to 60% (Rimes) and 35% (IAM) relative improve-
ment compared to a Gaussian HMM based on pixel values.
The final systems give comparable results to recurrent neural
networks, which are the best systems since 2009.

Index Terms— Handwriting recognition, Hidden Markov
Model, Convolutional Neural Network

1. INTRODUCTION

Handwritten text recognition consists of transforming an im-
age into text. The difficulty of the task is manifold. The high
variability of handwriting styles should be reduced by an effi-
cient preprocessing of the image. Segmenting the words into
characters is difficult because of the cursive nature of hand-
writing. Hidden Markov models (HMM) of characters, con-
catenated to form word models (hence performing an implicit
segmentation of words during recognition) conveniently ad-
dress this problem, and deal with the variability of character
lengths. In this approach, a sliding window is scanned hori-
zontally over the image to extract a sequence of observation
vectors from the two-dimensional image. Selecting relevant
features to extract from the pixels is also a non-trivial issue.
Applying for example a PCA on the pixel values of the ex-
tracted frames provides an easy solution to this problem, but
relies on a good preprocessing. Higher level approaches may
consist of handcrafting features (e.g. [1]), which takes time,
or to let a system learn them directly [2].

Neural networks, and especially deep neural networks,
learn intermediate representations of their inputs, that are use-
ful for a subsequent classification task. Their combination
with HMMs improved the performance of both speech recog-
nition [3, 4], and handwriting recognition [5, 6, 2].

With their particular structure, including the notion of
receptive fields via weights sharing and distortion invari-
ance with pooling operations, convolutional neural networks
(ConvNN) [7] handle conveniently two-dimensional struc-
tures such as images, and can incorporate many hidden layers
- hence many intermediate representations - while keeping
the total number of free parameters relatively small. They
have been successfully applied to computer vision problems,
particularly to isolated character recognition [8, 9, 7] and
handwriting recognition [10, 11].

We compare standard Gaussian HMMs (GHMMs) based
on pixel values and on handcrafted features, with the combi-
nation of a ConvNN and an HMM in both hybrid [12] and tan-
dem [13] modes. We report significant improvements in iso-
lated word recognition on two publicly available databases,
achieving similar performance as LSTM-RNN, which gave
the best results on Rimes database since the ICDAR competi-
tion in 2009. Many parameters remain to be adjusted, leaving
room for further improvements.

The remaining of this paper is organized as follows. Sec-
tion 2 presents the relation of this work to earlier studies. Sec-
tion 3 describes our systems. We discuss our experiments and
results in Section 4, and conclude with perspectives in Section
5.

2. RELATION TO PRIOR WORK

Hammerla et al. [2] automatically extract features from a
bottleneck autoencoder. They train a GHMM with these fea-
tures to obtain frame labels, and further optimize the autoen-
coder with regularized non-linear Neighbourhood Compo-
nent Analysis. The results are comparable to those obtained
using heuristic features, but not better. In [5], a multi-layer
perceptron (MLP) extracts posterior features from consecu-
tive windows of pixels. The authors compare a hybrid and
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a tandem approach and show that they perform better than
the GHMM baseline, the tandem approach giving the best
results. Similarly, Doestch uses a Long Short-Term Memory
Recurrent Neural Network [6] and reports improvements in
both hybrid and tandem combination.

This work takes advantage of the power of convolutional
neural networks on the one hand, and of the combination of
neural networks and HMMs on the other hand. It is moti-
vated by the significant improvements reported with these ap-
proaches in the literature. It differs from [11, 14] because
we do not try to train the graph (or HMM) along with the
neural network, but we rather follow the common approach
[12, 4] of training them separately. Thus we can explore the
tandem combination, for which we report better results. Un-
like [14, 10], we focus on off-line handwriting recognition.
Unlike [11], we report results on public databases.

3. SYSTEM DESCRIPTION

3.1. Overview of the training

The aim of the procedure is to train a neural network to pre-
dict the HMM state s corresponding to a frame x, i.e. p(s|x).
These state posterior probabilities can be rescaled by the state
priors p(s) (or p(s)α, where α is a tunable parameter (Table
1)) to obtain pseudo-likelihoods. Such network can replace
the Gaussian mixtures emission model of a standard GHMM
(hybrid scheme [12]). The likelihoods can also serve as fea-
tures for a new GHMM (tandem scheme [13]). We assign
the frame labels of the training dataset with a bootstrapping
procedure, which consists in training a standard GHMM and
recording the forced alignments.

Hybrid NN/HMM models typically use several consecu-
tive frames as inputs for the neural network, the correspond-
ing target being the label of the central frame. Here we adopt
a different approach, where the neural network sees a wider
frame of 39 pixels, while the bootstraping feature-GHMM
sees only 9 pixel-wide frames. To ensure a coherent label-
ing, the (big) pixel frame is centered on the smaller frame.
Thus, we give the network more context, while keeping the
two dimensional structure of the input and getting rid of too
much redundant information. The network is trained using
the bootstrapping labels. It is then associated with the HMM
in hybrid mode to re-align the training data, and the HMM
transition model is updated using the alignment statistics. The
obtained alignment become the new labels for a second pass
of network training.

Scaling factor 0.0 0.1 0.5 1.0
WER 14.7% 14.3% 12.5% 14.3%

Table 1. Effect of state priors scaling factor α on WER on
Rimes development set with the hybrid model.

3.2. Pre-processing

We first correct the slant in the image with a projection-based
method [15]. Each image is cropped to the bounding box
of the word (found after an adaptive thresholding binariza-
tion). Then the contrast is enhanced (5% of darkest pixels are
mapped to black, 70% lightest to white, and a linear inter-
polation in between). Finally, we add 20 white pixels on left
and right to model the empty context. Pixel-based systems re-
quire fixed size frames: in these cases we rescale the image to
a fixed height of 72px, with different scaling factors applied to
three different zones (ascenders, descenders and core region).
We find these zones with the method described in [16].

3.3. Feature extraction

The handcrafted features comprise 26 geometrical and statis-
tical features and 8 directional features based on histogram of
gradients, and are computed from a sliding window of width
9 pixels shifted by 3 pixels along the word image. We then
apply first-order regression to get 68-dimensional feature vec-
tors [1]. The inputs of the pixel-GHMM and the hybrid model
are the pixel values of the frames. The image is first normal-
ized in height. Then we apply a sliding window of 39 pixels
width with a shift of 3 pixels, and rescale the extracted frames
to 32×32px for computation efficiency with the neural net-
work library. A PCA decorrelates the features and reduces
the vectors’ dimension to 30 for the pixel-GHMM.

3.4. HMM modelling

The topology of character HMM remains the same through-
out the experiments. We build six-state models for characters
(lower and upper case and accentuated letters, digits and some
punctuation - 81 for Rimes, 78 for IAM), with self-loops and
transitions to the next state only (see Table 2). We add two-
state “blank” character models for the beginning and the end
of words, corresponding to empty context. The HMM are
built and trained using Kaldi [17].

Number of states 3 4 6 8
WER - Rimes 25.2% 20.8% 17.4% 23.0%
WER - IAM 32.5% 27.1% 24.3% 27.2%

Table 2. Effect of number of states in character models. WER
are computer with about 22 Gaussians per mixture (feature-
GHMM)

3.5. Convolutional neural networks

The topology of the convolutional neural networks is similar
to LeNet5 [8], as shown on Figure 1. They consist of three
convolutional layers with 32, 64 and 128 feature maps and
5×5px filters, followed by max-pooling operations. On top
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of this architecture is a fully connected hidden layer of 700
hidden units, and an output softmax layer with as many units
as there are states in the HMM models (490 for Rimes, 472
for IAM). They are trained on a GPU using Alex Krizhevsky’s
cuda-convnet library1. We randomly split the original train-
ing set of words into a network training set (90%) and a net-
work development set (10%). After training, we re-align the
training data with the ConvNN and the HMM in hybrid com-
bination, and perform a second pass of training.

Fig. 1. LeNet5 convolutional neural network topology (from
[8]).

3.6. Combination of ConvNN and HMM

We tested two combination schemes. For the ConvNN/HMM
hybrid, the predictions of the network are rescaled by the
state priors and used directly by the HMM for decoding.
The ConvNN-GHMM tandem is a standard GHMM system,
which features are obtained by applying a PCA reduction to
50 dimensions on the logarithm of the rescaled predictions.

3.7. Language model

We take into account the prior distribution of words using a
unigram language model. The optical scaling factor is tuned
on an independent validation set (see Figure 2).

4. RESULTS

4.1. Databases

Rimes [18] - We work on the word recognition task proposed
for the ICDAR 2009 competition. The training set is com-
posed of 44,197 images with 4,508 unique words and the
development set contains 7,542 images with 1,636 unique
words. The systems are tested on the ICDAR 2009 evalu-
ation set, made of 7,464 images, with a closed vocabulary
composed of either 1,612 words (WR2 setting, 0% OOV) or
5,335 words (WR3 setting, 0% OOV).
IAM [19] - We also extract words from the IAM database.
The training set is composed of 53,841 words, the develop-
ment set is made of 8,566 words, and the set test contains
17,616 words. We used the smallest closed vocabulary, made
of only the words present in the annotations for development,

1http://code.google.com/p/cuda-convnet/

Fig. 2. Optical scale tuning on Rimes development set.

and we carried out the test experiments with the vocabulary
containing all annotations of the datasets (i.e. similar to the
WR3 setting for Rimes). This is the same experimental setup
as [1] except that we have a unigram language model, esti-
mated from the training set annotations.

4.2. Result analysis

On Rimes database, we first trained two standard GHMMs,
based on 32x32 pixel frames reduced by PCA to 30 dimen-
sions (pixel-GHMM) and on 9px-wide frames from which
68 features are extracted (feature-GHMM). The latter is bet-
ter in terms of Word Error Rate (WER), so we bootstap the
training of the ConvNN with the forced alignments obtained
with this system. The predictions of the networks, scaled by
state priors, are used in hybrid scheme with the HMM (Con-
vNN/HMM hybrid), and also reduced to 50 dimensions by
PCA as features for a new GHMM (ConvNN-GHMM tan-
dem). We then build a context-dependent (CD) system, based
on a CART tree with one root for all characters and about
1,000 leaves, using Kaldi’s mechanism. The final system is
then further optimized using a few iterations of Maximum
Mutual Information (MMI) training.

The HMM, or rather the transition model, used in the
hybrid experiments is derived from the feature-GHMM. We
studied the impact of the transition model in hybrid results.
The WERs on Rimes development set are shown on Table 3.
Between the first and second iteration of ConvNN training,
we update the transition probabilities of the HMM to fit the
new forced alignments. The effect of this update is small (no
improvement using the first-pass ConvNN, 0.03% absolute
improvement using the re-trained network). Interestingly, us-
ing the transition model derived from the pixel-GHMM does
not cause a dramatic degradation of the performance (only
0.22% absolute), showing that the transition model only plays
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a minor role in the final performance.
The results are presented in Table 4, and compared to the

best known results on these tasks. The hybrid system brings
a relative improvement of about 30% compared to feature-
GHMM, and the final context-dependent MMI trained tandem
yields a relative improvement of about 45% for Rimes WR2
setting. When comparing the systems using the same inputs,
i.e. pixel-GHMM and ConvNN-based models, we record up
to 60% relative improvement. The results are comparable to
the state-of-the-art recurrent neural networks, which are the
best single systems on this task, and part of the combination
of systems presented in [20].

On IAM database, we followed the same approach, with
the same sliding windows, PCA dimensions, and neural net-
work architecture. The number of states, optical and prior
scaling factors are optimized, but found to be close to the op-
timal values for Rimes. The results are shown on Table 5.
The improvements brought by the ConvNN in hybrid mode
and by the handcrafted features are similar, compared to the
pixel-GHMM. The tandem system is again better ; the final
relative improvement is about 35%. For fair comparison with
[1], in which no language model is applied, we also report
the results without LM, and observe that our system is still
better than a single context-dependent GHMM, and close to a
combination of a MLP/HMM hybrid and two GHMMs.

Hybrid model WER
First-pass CNN, original trans. model 12.9%
First-pass CNN, updated trans. model 12.9%
Second-pass CNN, original trans. model 12.3%
Second-pass CNN, updated trans. model 12.2%
Second-pass CNN, pixel-GHMM trans. model 12.4%

Table 3. Effect of transition model on WER on Rimes devel-
opment set.

Model Rimes-WR2 Rimes-WR3
pixel-GHMM 19.8% 21.4%
feature-GHMM 14.6% 16.4%
ConvNN/HMM hybrid 10.0% 11.7%
ConvNN-GHMM tandem 8.5% 9.9%

+ CD 8.0% 9.4%
+ MMI training 7.9% 9.2%

7 RNN + HMM [20] - 4.8%
RNN [21] 6.8% 9.0%
Tandem LSTM-HMM [6] - 9.7%

Table 4. Word error rate on the test set for the different sys-
tems on the ICDAR-2009 evaluation set for two different vo-
cabulary sizes (WR2 and WR3).

Model Dev Eval
pixel-GHMM 24.4% 31.7%
feature-GHMM 20.6% 24.9%
ConvNN/HMM hybrid 19.5% 25.2%
ConvNN-GHMM tandem 14.9% 20.6%

+ CD 14.5% 20.5%
- LM - 23.7%

MLP/HMM + 2 GHMM [1] - 21.9%
CD-GHMM [1] - 32.7%

Table 5. Word error rate on the dev and test sets for the dif-
ferent systems on IAM database

5. CONCLUSIONS AND FUTURE WORK

The experiments described in the previous sections showed
that the combination of a convolutional neural network and
a HMM can achieve good performance on isolated handwrit-
ten word recognition. The presented systems can outperform
both a Gaussian HMM based on the same pixel inputs, and a
GHMM working with handcrafted features. The tandem com-
bination is consistently better than the hybrid approach, which
confirm prior studies, and the results we report on Rimes are
comparable to the state-of-the-art LSTM networks, which po-
tentially use the context of the whole image to make the pre-
dictions at a given position. A number of parameters must
be optimized in these models: the sliding window size and
shift, the topology of the convolutional neural network, so
the proposed systems are promising but surely not optimal.
It would also be interesting to study the impact of the boot-
straping model’s quality on the final system performance. Im-
provements can be envisioned if we take advantage of the
structure of the convolutional network, particularly the repli-
cated weights, and build a Space-Displacement Neural Net-
work (SDNN) [14, 10] to extract the ConvNN features.
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