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ABSTRACT

This paper adapts a new template matching and target detection al-
gorithm in multispectral images to a compressive sensing strategy.
That template matching algorithm found in [1] relies on particular
properties of L1 minimization algorithms to succeed. We propose a
new algorithm that is reconstructing in a single step the location of
a given signature of interest bypassing the image reconstruction and
the template matching algorithm on that image. For that purpose,
we use a modified split Bregman algorithm with various regulariz-
ers. We conduct numerical experiments on real-world multispectral
image.

Index Terms— multispectral image, compressed sensing, tem-
plate matching, Bregman

1. INTRODUCTION

Target detection is one of the most important applications of mul-
tispectral imaging. Processing the data can become very time con-
suming and complex. There are many target detection techniques.
Recently Guo and Osher proposed an original approach relying on
L1 minimization in [1]. The data collected by multispectral sensors
is modeled as a matrixX . Each column corresponds to a channel and
each row is a pixel’s spectrum. Suppose we want to detect pixels of
spectral signature s. The following minimization in [1] is suggested:

argmin
u≥0

‖u‖1 s.t. ‖XTu− s‖2 < σ. (1)

The pixels of spectral signature s in X are identified by the nonzero
entries in u. This can be intuitively explained as follows. The term
XTu is the linear combination of all pixels’ spectrum ofX weighted
by u. The regularizer used is the L1 norm that make u sparse. As
a result, the algorithm is looking for a reduced set of pixels whose
linear combination with coefficients in u yields s. The only way to
satisfy this constraint is to have a nonzero entry in u at every pixels of
spectral signature s. That way, we would have a linear combination
of spectral signature approaching s which would give s.

However it raises two questions:

• How can we be sure that all pixels of interest are spotted?
This raises the question of missing detection.

• A linear combination of random pixels could yield s. How
can we be sure such a combination is discarded? This raises
the question of false positive.
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In the following, we will give arguments that answer these two ques-
tions.

The outline of the paper is as follows. In section 2 we review
the template matching algorithm and answer questions raised in the
introduction. In section 3 we develop a compressive template match-
ing performing the same detection without having the multispectral
image at hand. Section 4 is devoted to numerical results applied to
two different multispectral images. We give conclusions and perpec-
tives in section 5.

2. TEMPLATE MATCHING

The first question is why is there no false negative? In other words,
why every pixel of interest has a nonzero corresponding entry in
u? This can be intuitively explained by noting that if a solution of
XTu = s minimizing the L1 norm is randomly selected then it
has with high probability the largest possible support. Indeed, the
L1-ball is a polytope: it is a bounded intersection of half-spaces.
Its boundary is composed of faces. Edges are 0-dimensional faces
and facets are just (n − 1)-dimensional faces. The L1-ball has the
property that a point on its boundary and of support d is on a (d −
1)-face. Now, the solutions of XTu = s form a affine subspace.
Those whose L1 norm is minimum belongs to the intersection of this
subspace with the boundary of a L1-ball of minimum radius which
is a face. A point chosen at random in that face does not belong to its
boundary with high probability. Thus, this point is a solution with
the highest support. Based on this remark we make the following
assumption:

Assumption 2.1. Algorithms used to solve minimization problem
like (1) converge to a solution that has the largest L0 norm among
those that have the smallest L1 norm.

We now formulate a proposition that is easily derived from the
previous assumption and shows that two different solutions with
maximal support actually have the same support.

Proposition 2.1. Let u1 and u2 be two solutions of the minimization
problem (1) whose L0 norm is the largest. Then their support are
equal.

This proves that the algorithms will find the same support and
that this support will be maximal, hence no false negative.

The second question is why is there no false positive? In other
words why u has to be nonzero only for pixels of signature s? Indeed
in practiceX has many more rows than columns soXT is likely sur-
jective. In that case, we can imagine that u could mix very different
signatures so that XTu = s. However, even if such a combination
exists, the corresponding L1 norm of u would be likely larger than 1
and thus discarded.
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3. COMPRESSIVE TEMPLATE MATCHING

The previous template matching algorithm needs the whole multi-
spectral data cube to work. In this section, we propose an new al-
gorithm working in a compressive sensing context [2, 3] where we
only have access to a small number of linear measurements on the
multispectral image. The idea is to directly reconstruct the vector u
solution of (1) rather than reconstructing the whole multispectral im-
age first and then solve the algorithm (1). A similar bypassing idea
has been exploited on a recent paper [4] which deals with unmixing
of hyperspectral data.

We introduce necessary notations here. We will assume that the
multispectral image has nP pixels and nB bands. As a result, the
matrix X has nP rows and nB columns. The acquisition model is
described as

M = FX,

where F is a sensing matrix of sizem×nP andM the measurement
matrix of size m× nB . Suppose we only acquire a fraction p of the
overall data. We have the relation

m · nB = p · nB · nP .

so the number of rows of F is m = bp · nP c.
We now have to eliminate X from the two equations XTu = s

and M = FX . One way is to introduce a matrix between XT and
u of the from FTA so we could replace XTFT by MT and elim-
inate X . This matrix should theoretically be equal to the identity.
However that is impossible because FTA is not invertible. Given a
matrix F , we have to find a matrix A such that FTA ≈ InP . In the
following, we will consider two candidates for A. The first candi-
date come from the observation that if F is an independent and iden-
tically distributed (iid) Gaussian matrix, we have 1

m
FTF ≈ InP as

showed in [5]. We can then take A = 1
m
F and we will refer to this

type of matrix as type 1 (T1). One other candidate for A is obtained
by solving the following minimization

argmin
A

‖FTA− I‖F , (2)

where ‖ · ‖F is the Frobenius norm which is basically the Euclidean
norm of the vectorized matrix. This is a well know problem involv-
ing the pseudo-inverse of A. One can show that the solution writes
A = (FFT )−1F . However, that minimization does not help us de-
termining F . In fact, we can show that if F is of full rank, the norm
‖FT (FFT )−1F − Inp‖F is constant and is equal to

√
nP −m.

Among all matrix of full rank F , some are obviously better than
others for a sensing matrix. For example, the matrix(

Im 0
)
, (3)

is a very bad one because the distance to Ip is concentrated in a few
entries. We would like to have the error shared equally by all the
entries of F . Keeping (FFT )−1F as a possible candidate, we are
now interested in the minimization

argmin
λ

‖λFT (FFT )−1F − I‖∞. (4)

The solution is the right scaling of the candidate (FFT )−1F so as to
minimize the maximum error. If F is iid Gaussian, we have already
seen that FFT ≈ nP Im. We have also FTF ≈ mInP . This
suggests that λ = nP

m
. This is indeed what we find in Fig. 1 where

m = 30 and nP = 100, the minimum error is at λ ≈ 3 = nP
m

.
We have two candidates. Type 1 (T1) is 1

m
F and type 2 (T2)

is nP
m

(FFT )−1F . Figure 2 depicts the maximum error for the two

1 2 3 4 5

0.6

0.8

1

1.2

1.4

λ

‖λ
F
T
(F
F
T
)−

1
F
−
I n
p
‖ ∞

Fig. 1: λ minimizing maximum error

types of matrix A. We also try two types of sensing matrix F : iid
Gaussian and iid Gaussian circulant. Circulant matrix are used as
sensing matrix because it has been shown to be almost as effective as
the Gaussian random matrix for CS encoding/decoding [6, 7]. Even
if candidate of type 1 come from a minimization of the Frobenius
norm, it is actually performing better than type 2. Quite surpris-
ingly, the smallest error is obtained when F is the first m rows of a
circulant matrix generated from a iid Gaussian vector.
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Fig. 2: Maximum error selected candidate for A

From now on, we will consider matrix A of type 2. We can now
eliminate X from XTu = s and M = FX . We have

XT (
nP
m
FT (FTF )−1)Fu = s,

and then, using M = FX , we have

MT (FFT )−1Fu =
m

nP
s.

The minimization then becomes

argmin
u≥0

‖u‖1 s.t. ‖MT (FFT )−1Fu− m

nP
s‖2 < σ. (5)
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4. NUMERICAL RESULTS

In this section we illustrate compressive template matching by solv-
ing minimization (5). We solve that minimization for different regu-
larizers to improve the results. For example, we mix the total varia-
tion norm (TV ) [8] that adds a geometric constraint that well char-
acterize the location of the signature and the L1 norm that promotes
sparsity.

Due to their simplicity and flexibility, we use split Bregman al-
gorithms [9, 10] implemented in Matlab R© to solve these minimiza-
tions. The detailed algorithm is shown below. The non-negativity of
u is obtained by forcing intermediate solutions to be non-negative.
The Bregman parameters β1 and β2 control the two inner Bregman
iterations. The size of the image is limited to 64 × 64 because

Solve: argmin
u≥0

‖φ(u)‖1 s.t. ‖Au− f‖2 < err

Data: φ,A, f, β1, β2, err
Result:
b0 := 0;
f0 := 0;
d0 := 0;
k := 0;
Dinv := (β1A

TA+ β2φ
Tφ)−1;

repeat
uk+1 := Dinv(β1A

T (f − fk) + β2φ
T (dk + bk));

uk+1 := max(uk+1, 0);
dk+1 := s 1

β2

(φ(uk+1)− bk);

bk+1 := bk + dk+1 − φ(uk+1);
fk+1 := fk +Auk+1 − f ;
k := k + 1;

until ‖Auk+1 − f‖2 < err;

Algorithm 1: Constrained Split Bregman

we choose an iid Gaussian sensing matrix and we have to compute
MT (FFT )−1FT . A solution is to store the matrix (FFT )−1FT

once it is computed and reuse it. Another workaround is to use
a particular structure on the matrix F so that (FFT )−1 is easy to
compute. For example, we can orthogonalize F before we use it.

Another reason is that we have to first compute the matrix Dinv.
This computational problem can be overcome by using iterative al-
gorithms such as Gauss-Seidel [9] which avoids inverting a huge
matrix.

Algorithms are tested on two multispectral images. The first is
a 64 × 64 multispectral image of 16 bands extracted from a multi-
spectral image database1 of everyday objects presented in [11]. The
spectral signature s we want to detect is extracted from Sylvester’s
nose.

The second multispectral image is extracted from the Moffet
Field AVIRIS multispectral image2. We selected 16 bands from the
224 available and extracted a 64× 64 image of interest.

4.1. Test results on the Sylvester multispectral image

Figure 3a shows the original image in false color. The result of the
template matching algorithm (1) is shown in Fig. 3b. Here, using a

1Available at http://www2.cmp.uea.ac.uk/Research/
compvis/MultiSpectralDB.htm.

2Available at http://aviris.jpl.nasa.gov/html/aviris.
freedata.html

L1 regularizer is sufficient to have a good detection. In the second

(a) Sylvester image in false
color

(b) Template matching on
Fig. a

(c) Compressive template
matching, 30% of data, L1
regularizer

(d) Compressive template
matching, 30% of data,
TV/L1 regularizer

Fig. 3: Signature detection on Sylvester image

row of Fig. 3 we see how compressive template matching is perform-
ing. The measurement rate is set to 30%. In Fig. 3c, the algorithm (5)
has a poor detection. The L1 regularizer is not sufficient. If we add a
geometric regularizer such as the TV norm, the results are improved
as we can see in Fig. 3d.

In Fig. 4, we see how the different algorithms are doing when
the image is contaminated with Gaussian noise (σ = 15%).

4.2. Test results on AVIRIS image

We then test our algorithm on a AVIRIS image in Fig. 5a. We would
like to detect the spectral signature of buildings which is known. We
still take 30% of the overall data and we test the same regularizers
as in the previous figures. The template matching in Fig. 5b is still
doing well. The compressive template matching with a L1 regular-
izer in Fig. 5c is clearly insufficient here. The results are improved
if we add a TV regularizer but they are not comparable to the results
obtained by the template matching algorithm in Fig. 5b. The table 1
shows the percentage of wrong detection for different measurement
rates. A 100% measurement rate simply means that the standard
non-compressive algorithm with full data is used.

5. CONCLUSION

In this paper we propose a compressed sensing scheme for signature
detection in multispectral images. Based on the recent L1-based
algorithm found in paper [1], we add a compressed sensing part by
working on measurements rather than on the image itself. We have to
carefully choose the sensing matrix so that the approximation made
is the smallest possible. We use a slightly modified version of the
split Bregman to find non-negative solutions to our problem. Due
to the high flexibility of the split Bregman algorithms it is easy to

2388



(a) [Sylvester image in false
color

(b) Template matching on
Fig. a

(c) Compressive template
matching, 30% of data, L1
regularizer

(d) Compressive template
matching, 30% of data,
TV/L1 regularizer

Fig. 4: Signature detection on Sylvester image

Measurement rate (%) Wrong detection (%)
5 5.46
7 4.87

10 3.89
15 3.50
20 3.11
25 2.88
30 2.80
35 2.83
40 2.71
100 0.34

Table 1: Percentage of wrong detection for various measurement
rate

add other type of regularizers to improve the results. Future work
includes generalization to pattern matching. It is in fact possible to
detect the concatenation of all signatures of the pattern.
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