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ABSTRACT

Despite superior performance of Local Binary Pattern (LBP) in tex-
ture classification and face detection, its performance in human de-
tection has been limited for two reasons. Firstly, LBP differentiates a
bright human from a dark background and vice-versa. This increases
the intra-class variation of humans. Secondly, LBP is contrast and il-
lumination invariant. It does not discriminate between weak contrast
local regions and similar strong contrast ones, resulting in a simi-
lar feature representation. Non-Redundant LBP (NRLBP) has been
proposed to solve the first issue of LBP. However, an inherent lim-
itation of NRLBP is that LBP codes and their complements in the
same block are mapped to the same code. Furthermore, NRLBP, like
LBP, is also contrast and illumination invariant. In this paper, we
propose a novel edge-texture feature, Discriminative Robust Local
Binary Pattern (DRLBP), for human detection. DRLBP alleviates
the problems of LBP and NRLBP by considering the weighted sum
and absolute difference of a LBP code and its complement. Our ex-
perimental results show that DRLBP consistently outperforms LBP
and NRLBP for human detection.

Index Terms— local binary pattern, feature extraction, human
detection, LBP, pedestrian detection

1. INTRODUCTION

A challenging problem of human detection to date is finding the most
suitable feature for human description. The work on feature extrac-
tion can be divided into two groups based on the representation. The
first group is sparse representation, where local features are obtained
using interest point detection algorithms and are used to represent
humans holistically (whole) or by parts. In [1, 2], parts-based mod-
els for detecting humans were proposed whereby features were ex-
tracted for each part and based on geometric constraints, assembled
to form descriptors. Contour fragments of objects were used in [3]
as features which were learnt incrementally and shared across object
categories. Nguyen et al. [4] proposed using Non-Redundant Local
Binary Pattern (NRLBP) to describe regions around local interest
points obtained using a SIFT detector for human detection. These
features were stored in a codebook for matching.

The second group is dense representation, where features are
extracted densely over a detection window and concatenated into a
high-dimensional descriptor. Various features such as Edgelet [5],
Histogram of Oriented Gradients (HOG) [6], HOG with shape tem-
plate [7], Covariance descriptors [8], Local Binary Pattern (LBP)
and its variants [9, 10], Extended Histogram of Gradients [11, 12]
and Histogram of Template [13] have been proposed over the recent
years. A common trait among most of these features is that they are

usually represented by image intensities or gradients. This is not sur-
prising as the contour of humans contains discriminative information
that enables its differentiation from non-human objects.

LBP is a computationally-efficient texture feature that is popular
in texture classification [14, 15, 16, 17] and face detection [18, 19].
LBP is illumination and contrast invariant as it only considers the
sign of the difference between two pixels. Representing LBP in
the form of histogram makes the descriptor resistant to translations
within the neighbourhood of histogramming. There are works that
propose variants of LBP for human detection. In [9], the authors
identified the storage requirement of LBP features and the huge dis-
similarity of semantically similar features as limitations of LBP for
human detection. As such, they proposed 2 variants of LBP to better
describe humans. In [10], the authors proposed using a concate-
nation of cell-structured LBP, similar to [6], and HOG to describe
humans. Their feature showed a much better performance compared
to [9]. Nguyen et al. [4] proposed using NRLBP for human descrip-
tion by mapping an LBP code and its complement to the minimum
of the two.

However, for human detection, LBP has two issues. Firstly, LBP
differentiates a bright human against a dark background and vice
versa. This differentiation is undesirable in the context of human de-
tection. In [4], NRLBP is proposed to map an LBP code and its com-
plement to the minimum of the two to solve the problem. However,
this presents another issue. In the same block, NRLBP maps a LBP
code and its complementary representation to the same value. This
produces a similar feature for some different local structures. Hence,
NRLBP is unable to differentiate some local structures. Lastly, be-
ing illumination and contrast invariant, LBP and NRLBP do not dif-
ferentiate between a weak contrast local region and a similar strong
contrast one. Human contours tend to be situated in regions of strong
contrast. Therefore, by totally discarding contrast information, the
human contour may not be effectively discriminated by these fea-
tures.

In this paper, we propose a novel edge-texture feature, Discrimi-
native Robust LBP (DRLBP), in a dense representation to better dis-
criminate between humans and non-humans. To alleviate the prob-
lems of LBP and NRLBP, the gradient weighted sum and absolute
difference of a LBP code and its complement is considered. A lin-
ear SVM classifier is used for classification. The contribution of the
paper is three-fold: 1) DRLBP differentiates most patterns which
NRLBP misrepresents. Hence, we resolve the limitation of NRLBP
whereby LBP codes and its complementary codes are mapped to the
same code in the same block; 2) DRLBP, like NRLBP, does not dif-
ferentiate the situations of a bright human against a dark background
and vice versa; 3) DRLBP differentiates a weak contrast local region
and a similar strong contrast one which enables it to represent human
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Fig. 1: Problem of Local Binary Patterns (LBP) and its solution by
Non-Redundant LBP (NRLBP). For illustrative purposes, ωx,y = 1
and the vertical axis is truncated to make the bins clearer as there
are uniform regions in the examples which results in high values in
some bins.

contours more effectively compared to LBP and NRLBP.

2. DISCRIMINATIVE ROBUST LOCAL BINARY PATTERN

2.1. Limitations of LBP and NRLBP

The Local Binary Pattern (LBP) [16] code for a pixel at location
(x, y) is computed as follows:

LBPx,y =

B−1∑
b=0

s(pb − pc)2b, (1)

s(z) =

{
1, z ≥ 0
0, z < 0

where pc is the value of the pixel at (x, y), pb is the value of the
pixel in the b-th location on the circle of radius R around pc and B
is the total number of neighbouring pixels. For a M × N block,
a LBP histogram of 2B bins is computed for feature representation.
There are some patterns that occur more frequently than others and
the number of state transitions between 0 and 1 for these patterns
are at most two [16]. Such patterns are termed as uniform patterns
and the rest as non-uniform. By giving each unique uniform pattern
a bin and collating all non-uniform patterns into a single bin, the
number of bins for the histogram is reduced accordingly. ForB = 8,
the number of bins is reduced from 256 to 59. LBP is invariant to
any monotonic changes to the image due to its fixed threshold of 0.
Hence, it is illumination and contrast invariant.

An issue with LBP is that it differentiates a bright human from a
dark background and vice-versa as the codes for the 2 situations are
different. This differentiation makes the intra-class variation of the
humans larger. In Fig. 1(a), the 2 situations in a block are illustrated
for LBP. As it can be seen, the LBP features for the 2 situations are
completely different.

A solution for the problem of LBP is proposed in [4] as Non-
Redundant LBP. The authors propose mapping an LBP code and its
complement to the minimum of the two. For instance, a LBP code
of “1101 0101” and its complement, “0010 1010” will be treated as
“0010 1010” in the mapping. Hence, the code “1101 0101” becomes
redundant as it is never used in the histogram. NRLBP is robust to
the reversal in intensity between the background and the humans
than LBP. NRLBP can be computed as follows:

NRLBPx,y = min
{
LBPx,y, 2

B − 1− LBPx,y }, (2)

5 10 15 20 25 300

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 10 15 20 25 300

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 10 15 20 25 300

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 10 15 20 25 300

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) (b)
Fig. 2: Problem of Non-Redundant LBP (NRLBP). 4 local structures
are shown in the first row. The second row shows the NRLBP feature
for each structure. For each structure pair, the NRLBP feature is the
same. For illustrative purposes, ωx,y = 1 and the vertical axis is
truncated to make the bins clearer as there are uniform regions in the
examples which results in high values in some bins.

Since the mapping reduces the number of codes by half, the number
of bins for NRLBP histogram is 128 for B = 8. Using uniform
codes, the number of bins is further reduced to 30. Fig. 1(b) illus-
trates how NRLBP mitigates the brightness reversal issue of human
and background of LBP. It can be observed that for both situations,
the NRLBP feature is similar.

In order to alleviate the intensity reversal problem of human and
background, NRLBP maps LBP codes to the minimum of the code
and its complement. However, this mapping function makes it dif-
ficult for NRLBP to differentiate some local structures that are dis-
similar. It is possible that 2 different structures may have a similar
feature representation. This is illustrated in Fig. 2 in the second row.
This problem of NRLBP is caused by merging complement codes in
the same block.

2.2. The Proposed Discriminative Robust Local Binary Pattern

For human detection, the contour of the human, which typically
resides in high contrast regions between the human and the back-
ground, contains discriminatory information. LBP is illumination
and contrast invariant. The histogramming of LBP codes only con-
siders the frequencies of the codes i.e. the weight for each code in the
block is 1. This form of histogram is unable to differentiate between
similar regions of different contrast. Therefore, a weak contrast local
region and a strong contrast one have similar feature representations.

To mitigate this problem, a weighting scheme is proposed.
Given an image window, following [6], the square root of the pixels
is taken. Then, the first order gradients are computed in the x- and
y-directions. The gradient magnitude at each pixel is then computed
and used to weigh its LBP code. The stronger the contrast at the
pixel, the larger the weight assigned to the LTP code at that pixel.
Consider a LBP histogram for a M ×N image block. The value of
the ith bin of the weighted LBP histogram is as follows:

hlbp(i) =

M−1∑
x=0

N−1∑
y=0

ωx,yδ(LBPx,y, i), (3)

δ(m,n) =

{
1, m = n
0, otherwise

where ωx,y is the gradient magnitude at the pixel location (x, y).
It is not difficult to see that the NRLBP histogram can be com-

puted from (3) as follows:

hnrlbp(i) = hlbp(i)+hlbp(2
B − 1− i), 0 ≤ i ≤ 2B−1− 1 (4)
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Fig. 3: DRLBP differentiates the local structure pairs in Fig. 2 mis-
represented by NRLBP. For illustrative purposes, ωx,y = 1 and the
vertical axis is truncated to make the bins clearer as there are uni-
form regions in the examples which results in high values in some
bins.

where hnrlbp(i) is the ith bin value of NRLBP. In order to resolve
the issue of NRLBP whereby, in the same block, all LBP codes
and their complements are mapped to the same bin, the following
is proposed. Consider the absolute difference between the bins rep-
resenting a LBP code and its complement to form Difference of LBP
(DLBP) block histograms as follows:

hdlbp(i) = |hlbp(i)−hlbp(2
B − 1− i)|, 0 ≤ i ≤ 2B−1− 1 (5)

where hdlbp(i) is the ith bin value of DLBP. For blocks that contain
structures that have both LBP codes and their complements, DLBP
assigns small or almost zero values to the bins that the codes are
being mapped to. By doing so, it differentiates these structures from
those having no complement codes.

The 2 histogram features, NRLBP and DLBP, are concatenated
to form Discriminative Robust LBP (DRLBP). The value of the ith

bin of DRLBP histogram is as follows:

hdrlbp(i) (6)

=

{
hnrlbp(i), 0 ≤ i ≤ 2B−1 − 1
hdlbp(i− 2B−1), 2B−1 ≤ i < 2B

=

{
hlbp(i) + hlbp(2

B − 1− i), 0 ≤ i ≤ 2B−1 − 1
|hlbp(i)− hlbp(2

B − 1− i)|, 2B−1 ≤ i < 2B

For B = 8, the number of bins is 256. Using uniform pattern rep-
resentation, the number of bins is reduced to 60. Fig. 3 illustrates
how DRLBP produce unique features for the structures shown ear-
lier in Fig. 2. Hence, DRLBP represents the human contour more
discriminatively than LBP and NRLBP. DRLBP also resolves the
issue of differentiation of a bright object against a dark background
and vice-versa as shown in Fig. 4.

3. EXPERIMENTAL STUDY

We perform experiments on two challenging data sets - INRIA [6]
and Caltech Pedestrian Data Set [20]. Results are reported for both
data sets using the per-image methodology suggested in [20] as the
authors have shown it to be a better evaluation method. The per-
image performance for dense representations of LBP and NRLBP
on INRIA and Caltech, to the best of our knowledge, have not been
published to date. Hence, experiments are performed for these fea-
tures on the INRIA and Caltech data set. The feature parameters for
LBP, NRLBP and DRLBP are set as follows. For both data sets, a
block size of 16 × 16 pixels is used. A neighbourhood of 8 (B)
pixels is considered using a circle of radius 1 (R). A 50% overlap
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Fig. 4: Same DRLBPs are produced for patterns in Fig. 1. For
illustrative purposes, ωx,y = 1 and the vertical axis is truncated to
make the bins clearer as there are uniform regions in the examples
which results in high values in some bins.

of blocks is used in the construction of the features. Square root of
L1 norm normalization is used as our preliminary experiments show
that this gives the best results. The overlapping block features for
the image window is concatenated to form the overall window fea-
ture for training the linear SVM classifier.

The training set of INRIA is used to train the classifiers for IN-
RIA and Caltech Data Sets. The training data set contains 2416
cropped positive training images and 1218 uncropped negative train-
ing images. The sliding image window size is 128 × 64 pixels. We
randomly take 10 samples from each negative image to obtain a to-
tal of 12180 negative samples for training the linear SVM classifier.
Bootstrapping is then performed on the negative images across mul-
tiple scales at a scale step of 1.05 to obtain hard negatives which are
combined with the original training set to retrain the SVM classifier.
This training procedure is exactly the same as the ones described
in [6] and [20]. Note that the NRLBP feature representation in our
work differs from the one in [4]. In our work, dense representation
is adopted while sparse representation was used in [4] with proba-
bilistic classification.

3.1. Results on INRIA Data Set

The INRIA test set consist of 288 images. The images are scanned
using over multiple scales at a scale step of 1.05. The window stride
is 8 pixels in the x and y directions. These parameters are the same
as those used in [20] for test. The miss rate against false positives
per image (FPPI) is plotted to compare between different detectors.
The log-average miss rate [20] is used to summarize the detector
performance.

The performance of DRLBP is compared with LBP, NRLBP and
HOGLBP [10] (best performing LBP variant) in Fig. 5. The results
of HOGLBP is given in [20]. This detector is trained and optimized
by [10] and tested in [20]. DRLBP achieves a log-average miss rate
of 36% which is significantly lower than all the methods being com-
pared with. HOGLBP has a log-average miss rate of 39%. NRLBP
performs worse than LBP as there is a significant loss of information
due to the mapping of the LBP code and its complement to the same
value. DRLBP consistently outperforms LBP and NRLBP. It even
outperforms HOGLBP which is a hybrid feature representation. Fig.
7a shows some examples of DRLBP detections.

3.2. Results on Caltech Pedestrian Detection Benchmark Data
Set

The Caltech Pedestrian Detection Benchmark testing data set con-
tains 155 000 annotated pedestrian samples in 65 000 images and 56
000 negative images. The authors in [20] reported results whereby
they used detectors trained on other data sets like INRIA for clas-
sification on their test set. Here, the results are also presented in a
similar manner to [20] where detectors are trained using the INRIA
data set and tested on the test set of Caltech. The scale step used is
1.05. The window stride is 8 pixels in the x and y directions. The
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Fig. 5: Performance of DRLBP against LBP, NRLBP and HOGLBP
[Best viewed in colour]. DRLBP outperforms all other methods.

settings used here are similar to those used in [20]. Similar to [20],
in order to detect humans at smaller scales, the original images are
upscaled. Only every 30th frame is evaluated so that comparisons
can be kept consistent with those in [20].

The detectors we compare with our implemented detectors are
the same as those in Section 3.1. The miss rate versus false posi-
tives per image [20] is plotted and log-average miss rate is used as
a common reference value for summarizing performance. Fig. 6
plots the performance on 50-pixel or taller, unoccluded or partially
occluded pedestrians (reasonable evaluation setting). DRLBP per-
forms the best at a log-average miss rate of 62%. HOGLBP has a log-
average miss rate of 68% while LBP and NRLBP have log-average
miss rate of 79% and 85% respectively. DRLBP consistently outper-
forms LBP and NRLBP. At values of 10−2 FPPI and higher, DRLBP
outperforms HOGLBP consistently. Fig. 7b shows some examples
of DRLBP detections.

3.3. Relation to prior work

The work in this paper focuses on a novel edge-texture feature,
DRLBP, which fuses gradient and texture information into a single
feature. Although Nguyen et al. [4] identified a limitation of LBP
whereby a bright human against a dark background is differentiated
from a dark human against a bright background, their proposed
feature, NRLBP, has limitations. NRLBP maps LBP codes and its
complements in the same block to the same code. This causes some
structures to be misrepresented by NRLBP. Furthermore, NRLBP,
like LBP, discards contrast information. As a result, similar regions
with different contrast have similar feature representation. HOGLBP
[10] is the most closely-related and best performing LBP variant
feature to date. However, HOGLBP is made up of concatenated edge
(HOG) and texture (LBP) features. Since LBP was not modified,
HOGLBP suffers from the same problems identified for LBP. Our
work capitalizes on the limitations of LBP and NRLBP which was
not considered by any of the previous work [4, 9, 10]. Our proposed
feature, DRLBP, considers both the gradient weighted sum and ab-
solute difference of the bins of the LBP codes with their respective
complement codes.
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Fig. 6: Evaluation results under reasonable condition on test set of
Caltech Pedestrian Data Set [Best viewed in colour]. DRLBP out-
performs all other methods.

4. CONCLUSION

This paper presents a novel edge-texture feature, Discriminative Ro-
bust Local Binary Pattern (DRLBP), for human detection to alleviate
the limitations of Local Binary Pattern (LBP) and Non-Redundant
LBP (NRLBP). LBP differentiates a bright human against a dark
background and vice-versa. For human detection, this differentiation
makes the intra-class variation of humans larger. NRLBP mitigates
the problem of LBP by choosing the minimum of a LBP code and
its complement. However, NRLBP maps LBP codes and its com-
plements in the same block to the same code. This causes some
structures to be misrepresented by NRLBP. Furthermore, LBP and
NRLBP discard contrast information in their representation. As a
result, similar regions with different contrast have similar feature
representation. For human detection, this is not desired as the hu-
man contour contains the most relevant information. By ignoring
the contrast information, the contour is not effectively discriminated
by the features. The new feature, DRLBP, considers both the gra-
dient weighted sum and absolute difference of the bins of the LBP
codes with their respective complement codes. In this way, DRLBP
alleviates the problems of LBP and NRLBP for human detection. Re-
sults demonstrate that DRLBP always outperforms LBP and NRLBP
consistently and performs better than HOGLBP.

(a) INRIA human data set.

(b) Caltech data set. Black bounding boxes indicate detection of pedestrians
which are not considered for performance comparison.
Fig. 7: Detection results of DRLBP on various data sets used in the
experiments [Best viewed in colour]. True detections are indicated
in green while false positives are in red.
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