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ABSTRACT
The Kinect has primarily been used as a gesture-driven

device for motion-based controls. To date, Kinect-based re-
search has predominantly focused on improving tracking and
gesture recognition across a wide base of users. In this pa-
per, we propose to use the Kinect for biometrics; rather than
accommodating a wide range of users we exploit each user’s
uniqueness in terms of gestures. Unlike pure biometrics, such
as iris scanners, face detectors, and fingerprint recognition
which depend on irrevocable biometric data, the Kinect can
provide additional revocable gesture information. We pro-
pose a dynamic time-warping (DTW) based framework ap-
plied to the Kinect’s skeletal information for user access con-
trol. Our approach is validated in two scenarios: user iden-
tification, and user authentication on a dataset of 20 indi-
viduals performing 8 unique gestures. We obtain an overall
4.14%, and 1.89% Equal Error Rate (EER) in user identifica-
tion, and user authentication, respectively, for a gesture and
consistently outperform related work on this dataset. Given
the natural noise present in the real-time depth sensor this
yields promising results.

Index Terms— Dynamic Time Warping, Kinect, Revoca-
ble biometrics, Skeletal tracking, User Identification and Au-
thorization

1. INTRODUCTION

The inherent nature of pure biometrics [1] is that it relies on
irrevocable information. This information comes from nat-
ural characteristics: the face, iris, retina, and one’s finger-
print. Unfortunately, some of these characteristics can be
easily intercepted: the face is public information, and finger-
prints can be unintentionally left behind on surfaces. As a
result, once this information is stolen, it becomes difficult to
reliably prove one’s identity. This makes revocable alterna-
tives desirable. This is achievable by adding additional in-
formation through body gestures, which can be altered and
changed if necessary.

This work supported in part by the National Science Foundation under
awards CCF-0905541 and CNS-1228869.

The Kinect’s growing popularity has led to a wide assort-
ment of depth-based applications ranging from gesture-based
controls [2] to full body gait analysis [3]. A natural extension
of these applications would be into the domain of user access
controls. By performing a gesture in front of the Kinect and
extracting its depth information, unique user information can
be obtained.

This paper provides two key contributions to the area:
an adapted dynamic time warping framework that uses the
Kinect skeletal model with revocable gestures in the context
of user access controls, and an in-depth analysis of rele-
vant evaluation methods (authorized/unauthorized user group
splits) in the scenarios of authorization and identification.

1.1. Overview and Related Work

There have been few related works in the context of Kinect-
based user authentication and identification. Sae-Bae et al.
[4] explore multi-touch gesture authentication using dynamic
time warping with finger features. Ball et al. [5] propose
using k-means clustering to identify users based on skeletal
walking gait but report very limited experimental results. Lai
et al. [6] use Kinect-based body silhouettes to identify users
with an empirical log-covariance framework.

Our methodology expands on the approach of Lai et al.
[6] by adopting the Kinect skeleton model instead of the body
silhouette. Since the Kinect SDK returns labeled skeletal
joints across time, we can treat the joint coordinates as sep-
arate time-series, and evaluate pairwise distances between
joints using dynamic time-warping. Furthermore, we extend
the method described in [6] to perform user authentication
(the original method was applied to identification only1) and
use it as a baseline against our newly proposed framework.

2. METHODOLOGY

2.1. Skeleton Model Features

The Kinect SDK [7] provides real-time 20-joint skeletal
tracking by using depth information. These skeleton models

1Lai et al.[6] refer to identification as authentication
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Fig. 1. Skeletal time-snapshots of a user swinging his left arm. Red and green indicate the left and right arms, respectively, and
blue indicates the center of the body: head to spine, and both legs. All gestures are arm based.

track the following center-body joints: head, neck, spine,
center hip, as well as the left- and right-side joints: hand,
wrist, elbow, shoulder, hip, knee, ankle and foot. These joints
are shown in Fig. 1.

In the dataset used, a single gesture consists of the joint
information (x,y,z coordinates) across all 20 skeletal joints
over the span of 30 frames (1 second). Eight different ges-
tures were performed by 20 different users, with each user
repeating the same gesture 5 times. The performed gestures
include the following: right-arm swing, right-arm push, right-
arm back, left-arm swing, left-arm push, left-arm back, zoom-
in (arms moving outwards), zoom-out (arms closing inwards).
In total, this dataset consists of 8×20×5 = 800 short ges-
ture sequences across all users. This dataset was also used
in [6, 8].

2.1.1. Normalization of joint coordinates

In order to remove natural biases in the data, robust normal-
ization is necessary. In this scenario, the bias stems from rela-
tive translational and depth positioning, as well as from natu-
ral size variations among subjects. To rectify this, spine-based
centering and length normalization were applied as follows:
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where xg
i,t, y

g
i,t, z

g
i,t are the 3D coordinates of joint number

i at time t for gesture g. To center a gesture at the spine,
the spine joint coordinates were subtracted from all joints at
every time instant. To normalize the subject’s size, all the
coordinates were scaled by the distance between the neck and
spine joints.

2.2. Dynamic Time Warping Review

Dynamic time warping (DTW) is a well-known sequence
alignment algorithm that finds a non-linear warping path be-
tween two time-varying sequences. In our case, the time se-
quences are of the same length. Regardless, this warping path
finds the minimum cumulative cost to align the sequences.

This algorithm has been thoroughly investigated and its
properties explored in several publications [9, 10, 11, 12]. We
review this algorithm briefly below, and then adapt it to our
application. Consider two time sequences X

g1 and X
g2 re-

sulting from gestures g1 and g2. We define a time sequence
for gesture g as a collection of skeletal joints using the fol-
lowing notation:

X
g = (Xg

1,X
g
2, . . .X

g
n),

X
g
t = (xg

norm,1,t,x
g
norm,2,t, . . .x

g
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where n is the length of the sequence and X
g
t denotes the

collection of d joints for gesture g at time t. For our case, we
use the entire set of body joints, where d = 20.

To align two sequences X
g1 , and X

g2 , we define cost to
be the n × n cost matrix where the cost associated with time
instants (i, j) is given by:

cost(Xg1

i ,Xg2

j ) =
d

∑

p=1

||xg1

norm,p,i − x
g2

norm,p,j ||

where || · || is the Euclidean distance between d pairs of cor-
responding joints in the skeletal models.

Let P be defined as a possible path along the cost matrix cost
as follows:

P = {(ik, jk), k = 1, . . . , K : i1 = j1 = 1, iK = jK = n,

ik ≤ ik+1, jk ≤ jk+1}

where K is the path-length which can range from n to 2n,
inclusive. The cost of this path is defined as follows:

pathcost(P,Xg1 ,Xg2) =
∑

(ik,jk)∈P

cost(Xg1

ik
,Xg2

jk
)

For our final DTW cost, we are interested in the path
with least cost among all paths that begin at (1, 1) and end
at (n, n). The least cost path can be found via dynamic pro-
gramming [9]. The final cost between gesture g1 and gesture
g2 is given by:

DTW (Xg1 ,Xg2) = min
P

pathcost(P,Xg1 ,Xg2) (1)
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The run-time complexity of baseline DTW is O(n2).
Since Euclidean distance computation has O(d) complexity
which is linear in the number of joints, the overall complexity
is O(dn2). However, it has been shown that the amortized
cost for large datasets is typically of order O(n) [11]. Thus
with our cost function, the complexity is typically of order
O(dn).

3. EVALUATION

We define a gesture sample, or simply a sample, as one execu-
tion of an arbitrary gesture. Multiple samples are associated
with each user, all of them resulting from a variety of ges-
tures. In our dataset, there are 20 users with 40 samples per
user (each of 8 gestures executed 5 times). We evaluate user-
access control in two possible scenarios:

• User Authentication: User provides sample and iden-
tity information (analogous to ID and password in com-
puter login) for admission eligibility.

• User Identification: User provides sample but no iden-
tity information. This is a harder task than authentica-
tion as the system must evaluate admission eligibility
against the entire set of authorized users.

In order to exhaustively test the proposed method, K users
are split into L authorized users, and (K − L) unauthorized
users, called a L/(K − L) split. For every split, there are “K
choose L” combinations of authorized versus unauthorized
users. Samples of every such combination are evaluated for a
given distance threshold θ to obtain the false acceptance and
rejection rates (FAR and FRR).

In particular, in one test, each sample of each unautho-
rized user (query sample) is compared against samples from
authorized users. If the distance between the query sample
and the closest authorized user’s sample is below a threshold
θ, a false acceptance is declared. In another test for the same
threshold θ, leave-one-out cross-validation (LOOCV) is per-
formed on the samples of authorized users, i.e., one (query)
sample of an authorized user is removed and evaluated against
the remaining authorized samples. If the distance between
the query sample and the closest of the remaining samples is
above threshold θ, a false rejection is declared. FAR is de-
fined as the fraction of unauthorized user samples that were
falsely accepted. FRR is the fraction of authorized user sam-
ples that were falsely rejected. These values are computed for
a range of θ values. For a suitable choice of θ, the FAR and
FRR values become equal. This common value is called the
equal error rate (ERR).

We now describe our evaluation methodology in detail.
For a given L/(K − L) split, let each of the “K choose L”
combinations yield the following: the set A containing all
samples s belonging to L authorized users, and its comple-
ment of samples belonging to K − L unauthorized users, U :

A = {s1, . . . sm}, U = AC , S = A ∪ U , A ∩ U = ∅,

where m is the number of authorized samples, and S con-
tains all n samples (authorized and unauthorized), i.e., S =
{s1, . . . sm, . . . sn}.

Let d(si, sj) denote a distance function between two sam-
ples, here, this is the dynamic time warping cost (1), and the
log-covariance metric in the work of Lai et al. [6]. The dis-
tance of sample si from authorized samples in A can then be
defined as follows:

d(si,A) = min
sj∈A

d(si, sj)

For a given threshold θ, and set of authorized samples A from
a single split we can obtain the false acceptance and false re-
jection counts (FAC and FRC) for identification (ID) and au-
thentication (AU ) as follows:

FACID(A, θ) =
∑

s∈U

1(d(s,A) < θ)

FRCID(A, θ) =
∑

s∈A

1(d(s,A\{s}) ≥ θ)

FACAU (Au, θ) =
∑

s∈{S\Au}

1(d(s,Au) < θ)

FRCAU (Au, θ) =
∑

s∈Au

1(d(s,Au\{s}) ≥ θ)

where Au ⊂ A is the set of samples within A that belong
to a specific user u, and 1(B) is the indicator function which
equals 1 when B is true and 0 otherwise. In both counts,
the threshold θ compares the minimum distance a sample is
from all authorized samples (1-nearest-neighbor) through the
indicator function. For identification, the authorized sample
is any sample within the authorized group. For authentica-
tion, the authorized sample is any sample that belongs to the
authorized user whose identity is being claimed.

To get the FAR and FRR for a given θ across all given
splits for L authorized users, we consider all “K choose L”
authorized/unauthorized user combinations for identification
as follows:

FARID(L, θ) =

∑

A⊂S FACID(A, θ)
(

K

L

)

|U|

,

FRRID(L, θ) =

∑

A⊂S FRCID(A, θ)
(

K

L

)

|A|

,

where we compute all possible L user subsets A within S,
and for authentication:

FARAU (L, θ) =

∑

Au∈A⊂S FACAU (Au, θ)
(

K

L

)

(|S| − |A|/L)(L)

FRRAU (L, θ) =

∑

Au∈A⊂S FRCAU (Au, θ)
(

K

L

)

(|A|/L)(L)
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Identification Authentication

Gesture Proposed method Lai et. al.[6] Proposed method Lai et. al.[6]

Group Split 19/ 1 15/ 5 10/ 10 19/ 1 15/ 5 10/ 10 19/ 1 15/ 5 10/ 10 19/ 1 15/ 5 10/ 10

Right Swing 6.02% 6.02% 5.28% 7.07% 6.95% 5.74% 3.98% 3.98% 3.98% 4.04% 4.04% 4.01%
Right Push 3.99% 3.22% 2.91% 8.11% 8.31% 8.70% 2.03% 2.03% 1.98% 3.74% 3.73% 3.73%
Right Back 1.01% 1.01% 1.00% 0.00% 0.00% 0.00% 1.01% 1.00% 1.03% 0.00% 0.00% 0.00%
Left Swing 4.08% 4.02% 2.99% 4.03% 4.03% 3.99% 1.12% 1.11% 1.11% 2.01% 2.01% 2.01%
Left Push 9.05% 8.58% 7.61% 5.04% 4.99% 4.04% 2.02% 2.01% 1.96% 2.01% 2.01% 2.01%
Left Back 1.01% 0.99% 1.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Zoom-in 5.02% 4.94% 4.10% 9.57% 9.05% 7.99% 1.02% 1.02% 0.97% 2.45% 2.45% 2.45%
Zoom-out 7.97% 6.31% 5.71% 10.95% 8.95% 7.65% 2.59% 2.59% 2.59% 7.97% 8.02% 7.83%

All Gestures 4.14% 4.12% 3.51% 6.92% 6.49% 6.16% 1.89% 1.89% 1.89% 2.79% 2.73% 2.73%

Table 1. Equal Error Rate (EER) of various gestures for identification and authentication compared to the baseline [6]. Group
splits denote authorized/unauthorized users, i.e. 19/1 denotes the EER for 19 authorized/1 unauthorized user splits.

where we compute all possible L user subsets A within S,
across every subset Au within A. We average this across the
total possible number of false rejections and acceptances.

Authorized group splitting is useful because it evaluates a
methodology for different amounts of authorized users. For
example, a large authorized group split (typically harder to
solve), depicts a scenario where user access is shared amongst
many users (such as a door), and a smaller authorized group
split, depicts a scenario where user access is more personal
(such as a computer). We evaluate the aforementioned meth-
ods against previous work [6] on this dataset for the splits
(various L values) of 19 authorized users, 15 authorized users,
and 10 authorized users.

We also evaluate our method with various sets of S. We
consider 9 sets in total: 8 sets of users only performing sin-
gle gestures, and the set of all the gestures. Effectively, in
this evaluation we associate only a single gesture with a user,
or multiple gestures with a user. For the single-gesture sets,
5 samples are associated with each user (depending on the
gesture) and for the comprehensive set (all gestures), all 40
gesture-samples are associated with each user. As Table 1
shows, the proposed method provides a 32 − 40% overall
EER improvement for “All Gestures” for both identification
and authentication over [6]. This improvement over [6] is
also shown in Fig. 2 which shows FAR vs. FRR plots for the
19/1 split.

4. CONCLUSIONS

We have proposed and shown the viability of an extension to
Kinect skeletal tracking in the domain of user access control.

In the most ideal scenario, skeletal tracking is not biased
by one’s body shape (i.e., influences from additional layers
of clothing) and only tracks one’s underlying joints. This can
give it more robustness than methods that purely rely on the
body silhouette. In our method, we use skeletal tracking from
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Fig. 2. FAR vs FRR performance in identification and au-
thentication for the proposed metric evaluated against Lai et.
al [6] for the 19/1 split.

the Kinect SDK. Although there exist alternative, potentially
more robust methods [13] to calculate skeletal models from
depth maps aside from the baseline Kinect SDK, our frame-
work can easily be adapted to future improvements to skeletal
tracking.

This work has shown that the skeletal model contains
unique user information, and coupled with a user’s simple
gesture can be potentially used as a revocable biometric. Fu-
ture work may look into more sophisticated gestures, as well
as an extension of this work into continuous authentication,
where users are recognized across a longer period of time.
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