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ABSTRACT

We investigate in this paper the problem of face verification in
the presence of face makeups. To our knowledge, this prob-
lem has less formally addressed in the literature. A key chal-
lenge is how to increase the measured similarity between face
images of the same person without and with makeups. In
this paper, we propose a novel approach for makeup-robust
face verification, by measuring correlations between face im-
ages in a meta subspace. The meta subspace is learned us-
ing canonical correlation analysis (CCA), with the objective
that intra-personal sample correlations are maximized. Sub-
sequently, discriminative learning with the support vector ma-
chine (SVM) classifier is applied to verify faces based on the
low-dimensional features in the learned meta subspace. Ex-
perimental results on our dataset are presented to demonstrate
the efficacy of our approach.

Index Terms— Makeup, face verification, canonical cor-
relation analysis.

1. INTRODUCTION

Over the past two decades, a large amount of face recogni-
tion research has been done to pursue robustness to different
intra-subject variations, including variations in pose [1], illu-
mination [2], [3], and expression [4], [5]. Recently, several
age-invariant face recognition algorithms [6], [7] have also
been presented in the literature. However, to the best of our
knowledge, the problem of face recognition in the presence
of makeup has not been formally addressed in the literature.
In many real world applications such as visual surveillance
and web face image retrieval, there are usually some make-
ups on human faces, especially for females. Hence, a face
recognition system which is robust to face makeup could be
especially valuable to practical applications.

Different from face recognition, face verification aims to
determine whether two face images come from the same per-
son or not. We model face verification in the presence of
face makeups as a two-class classification problem. Given
an input image pair I1 and I2, the task is to assign the pair
as either intra-personal (I1 and I2 from the same person) or

Fig. 1. Illustration of how maximizing intra-individual corre-
lations leads to makeup invariance.

inter-personal (I1 and I2 from different persons). Due to the
makeup variation, the difference between two intra-personal
face images taken without and with makeups is usually large.
To address this, we propose learning a meta subspace in which
the difference of each pair of intra-personal samples is re-
duced as much as possible. Fig. 1 illustrates the basic idea
of our proposed approach. Let X and Y denote the face im-
ages without and with makeups, Wx and Wy are projection
matrices learned by our approach on X and Y , respectively.
Then, each pair of intra-personal face samples without and
with makeups are projected as close as possible in the learned
meta feature subspace, such that more discriminative infor-
mation can be exploited for verification. Experimental results
show the efficacy of our approach.

2. PROPOSED APPROACH

2.1. Correlation Maximized by CCA

We adopt canonical correlation analysis (CCA) [1], [8] to
learn a meta feature subspace to project both face samples
without and with makeups into a common feature space to
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achieve the makeup-invariance.
Let (X,Y ) be the training set consisting of n pairs of fea-

ture vectors from the images taken without and with make-
ups, respectively, where X = {x1, . . . , xn} ∈ Rp×n, Y =
{y1, . . . , yn} ∈ Rq×n, p and q are dimensions of X and Y ,
respectively. Here, both X and Y have been normalized to
zero mean.

CCA aims to learn pairs of canonical components, i.e.,
projective directions (wx, wy) which maximize the corre-
lation between intra-personal feature vectors (x, y) in the
common space. More formally, the objective function of
CCA(X,Y ) can be expressed as

(wx, wy) = arg max
wx,wy
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Since the means of X and Y are zero, Cxx = XXT and
Cyy = Y Y T are the covariance matrices of X and Y , re-
spectively, and Cxy = CT

yx = XY T is the within-person
cross-covariance matrix between X and Y .

To this end, the optimization problem of Eq. (1) can be
rewritten as

arg max
wx,wy

wT
xCxywy (2)

s.t. wT
xCxxwx = 1

wT
y Cyywy = 1 (3)

Using the Lagrangian multiplier method [8], we can ob-
tain wx and wy by solving the following generalized eigen-
value equation:[
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(4)

where the generalized eigenvalue λ is the correlation between
x and y. The eigenvectors (wxi, wyi), i = 1, . . . , d, corre-
sponding to the first d largest non-zero generalized eigenval-
ues are the pairs of projective directions for CCA [8]. In fact,
Cxx and Cyy could be singular in many applications such as
face verification, which stems from the fact that the number
of training images is smaller than the dimension of each im-
age, a deficiency that is generally known as small sample size
(SSS) problem. One possible way to address this SSS prob-
lem is to perform PCA projection to reduce the dimension of
the original face feature space. It is to be noted that some use-
ful discriminative information could be compromised in the
intermediate PCA stage [9], [10]. Hence, we alternatively ap-
plied the regularization technique proposed in [11] to add a

Table 1. Comparisons of the average sum of squared differ-
ence (ASSD) before and after CCA.

Before CCA After CCA
positive pairs 0.0068 1.62× 10−10

negative pairs 0.0071 0.0071

small perturbation µI to Cxx and Cyy of CCA. In our experi-
ments, µ is empirically set to be 0.000001.

Let Wx = [wx1, . . . , wxd] and Wy = [wy1, . . . , wyd], we
project a pair of face images without and with makeups (x, y)
into a common feature space by Wx and Wy as follows:

x̂ =WT
x x ∈ Rd (5)

ŷ =WT
y y ∈ Rd (6)

where (x̂, ŷ) is a pair of low-dimensional feature vectors in
the learned common feature space.

We select 200 positive and 200 negative image pairs from
our dataset, and compute the average sum of squared differ-
ence (ASSD) of these image pairs before and after CCA. The
positive samples are the pair of images from the same person
and the negative samples are the pair of images from differ-
ent persons. Generally, the number of negative pairs is larger
than that of positive pairs. Here, both 200 positive and nega-
tive pairs are from the same 200 subjects and the face images
without and with makeups of each subject occur once in both
the positive and negative pairs. Table 1 tabulates the ASSD of
these 200 positive and 200 negative images, where ASSD is
calculated as ASSD = 1

200‖x̂−ŷ‖
2. For a fair comparison, the

feature dimension of each image is set to 100. For image pairs
before CCA, PCA is used to reduce the feature dimensions,
and for those after CCA, CCA is applied to reduce the feature
dimensions. We can clearly see that CCA can significantly
reduce the difference between intra-personal face image pairs
without and with makeups.

2.2. Verification

Having obtained the feature representations of each pair of
face images, we apply support vector machine (SVM) [12]
to determine whether they are from the same or different
persons. Specifically, given a pair of low-dimensional fea-
ture vectors in a meta feature subspace (x̂, ŷ), they are first
mapped into a feature space as

z = F (x̂, ŷ) (7)

where z is the feature vector extracted from (x̂, ŷ) through a
feature extraction function F .

In this study, we adopt the following conventional feature
extraction function:

F : z = x̂− ŷ ∈ Rd (8)
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Fig. 2. Several examples of our FAM database. From top
to bottom are the cropped face images for females without
makeup, females with makeup, males without makeup, and
males with makeup, respectively. Each column of the first
two rows are from the same female person, and each column
from the bottom two rows are from the same male person.

where z is a feature vector applied to face verification.
Lastly, SVM is used to divide the feature space into two

classes, one for intra-personal pairs and the other for inter-
personal pairs. In our implementations, we use the libsvm
toolbox [12] for face verification.

3. EXPERIMENTS AND RESULTS

3.1. Data Set

To advance the makeup-robust face verification research and
show the effectiveness of our proposed approach, we build the
FAce Makeup (FAM) Database from face images of public
figures or celebrities without and with makeups available on
the Internet. Our dataset contains 519 subjects, 222 of them
are male and the remaining 297 are female. Each subject has
two face images in our dataset, one is with makeup and the
other is not. Due to the uncontrolled nature in capturing these
face images, we pose no restrictions on the variations other
than makeup. However, the key variations of these collected
face images is the makeup factor because our key objective
here is to investigate the problem of face verification in the
presence of face makeups. In our experiments, the images
are converted to gray-scale and normalized to 64 × 64 pix-
els according to the manually labeled eyes positions. Some
examples of the cropped facial images are shown in Fig. 2.

3.2. Experimental Setup

We adopt a 5-fold cross-validation strategy in our experi-
ments. Specifically, one group is used as testing data while
the other four groups as training data, and the process is

Table 2. Verification accuracy (%) obtained by different fea-
ture descriptors on our dataset (mean±std).

Feature Dim Positive Negative Mean
LBP 256 52.90± 3.38 49.60± 5.79 51.25± 3.16
TPLBP 256 50.80± 2.63 46.80± 6.61 48.80± 2.20
FPLBP 16 52.90± 3.38 49.60± 5.79 51.25± 3.16
LE 200 51.40± 3.61 48.50± 6.12 49.95± 2.21
SIFT 200 53.70± 6.58 51.30± 5.80 52.50± 1.47
HOG 9 50.08± 6.19 48.20± 6.15 49.50± 2.75
Ours 9 63.10± 2.55 61.70± 5.39 62.40± 3.18

Table 3. Verification accuracy (%) obtained by different face
verification methods on our dataset (mean±std).

Method Dim. Positive Negative Mean
CSML 50 60.30± 3.56 58.86± 3.68 59.58± 3.43
MEML 49 61.50± 2.35 60.50± 5.39 61.00± 3.43
Ours 9 63.10± 2.55 61.70± 5.39 62.40± 3.18

repeated five times for each group in turn to be used for
testing. In the following experiments, we report the average
verification rate with the standard deviation.

3.3. Results and Analysis

Experiment 1: Comparisons with Existing Face Feature
Descriptors: We compare our approach with several state-
of-the-art face feature descriptors methods: Local Binary
Patterns (LBP) [13], Three-Patch LBP (TPLBP) [14], Four-
Patch LBP (FPLBP) [14], LEarning-based (LE) [15], and
HOG [14]. For the LBP feature, we used 256 bins rather than
59 bins to describe each face image because we found such
parameter setting achieved better performance than that used
in [13]. For the LE method, we followed the parameter set-
ting in [15] and used 200 bins to encode a histogram feature
for each image. For the SIFT feature, we densely sampled
and computed the SIFT descriptors of 16 × 16 patches over
a grid with spacing of 8 pixels. For the TPLBP feature, we
followed the parameter setting in [14] and used 256 bins to
encode a histogram feature for each image. For details on
these feature descriptors, refer to [13], [15], [16], [14]. For
our method, the initial image features used are the raw pixel
intensity values. Table 2 records the verification rate with the
standard deviation obtained from different feature descriptor
methods on our dataset. As shown in this table, our approach
outperforms LBP, TPLBP, FPLBP, LE, SIFT and HOG with
advantages in average verification accuracy of 11.15, 13.60,
11.15, 12.45, 9.90, and 12.90 percentage points, respectively.

Experiment 2: Comparisons with State-of-the-art
Face Verification Algorithms: We compare our method
with two state-of-the-art face verification methods: Cosine
similarity metric learning (CSML) [17] and margin empha-
sized metric learning (MEML) [18]. Since the SIFT feature
performs the best, we select it for feature representation.

2344



Table 4. Verification accuracy (%) obtained by different fea-
ture descriptors on the male subset (mean±std).

Feature Dim. Positive Negative Mean
LBP 256 54.20± 7.62 53.40± 8.48 53.80± 3.25
TPLBP 256 53.20± 9.04 47.20± 7.02 50.20± 3.19
FPLBP 16 53.40± 6.22 48.20± 6.40 50.80± 2.52
LE 200 58.60± 7.41 45.40± 6.60 52.00± 2.98
SIFT 200 60.80± 6.50 62.80± 5.26 61.80± 3.96
HOG 9 50.80± 5.67 52.40± 5.64 51.60± 2.17
Ours 20 57.80± 4.03 57.60± 4.82 57.70± 3.46

Table 5. Verification accuracy (%) obtained by different fea-
ture descriptors on the female subset (mean±std).

Feature Dim. Positive Negative Mean
LBP 256 54.00± 6.11 53.20± 8.39 53.60± 5.89
TPLBP 256 55.40± 6.93 52.40± 7.58 53.90± 6.04
FPLBP 16 53.80± 6.26 46.80± 7.08 50.30± 5.00
LE 200 54.60± 4.90 51.20± 8.01 52.90± 5.98
SIFT 200 58.00± 5.57 58.00± 7.20 58.00± 4.88
HOG 9 54.00± 5.49 55.40± 6.80 54.70± 4.49
Ours 10 58.80± 4.65 57.40± 4.20 58.10± 4.01

For CSML and MEML, we follow the parameter settings in
[17] and [18], respectively. Table 3 tabulates the verification
rate with the standard deviation obtained from different face
verification methods. We can observe that our approach is
comparable to the state-of-the-art face verification methods.

Experiment 3: Comparisons across Genders: Since fe-
male makeups often alter appearances to greater extends than
the male counterparts, it is interesting to investigate how the
face verification performance differs between males and fe-
males. For a fair comparison, we select the same number of
face image pairs for both males and females. Specifically, we
use all the 222 image pairs of males in our dataset and ran-
domly select the same number of female image pairs to con-
struct the male and female subset, respectively. We adopt a
4-fold cross-validation strategy for experiments. Tables 4 and
5 record the verification rate with the standard deviation ob-
tained from different feature descriptor methods on the male
and female subset, respectively. As shown in these two tables,
our approach is the best method on the female subset and the
second best on the male subset, respectively. The reason why
the SIFT feature descriptor is better than our approach is that
under this scenario our approach is a learning-based method
and there are only about 165 image pairs for learning the meta
subspace and such limited number of samples may not effec-
tively discover the relations between the face samples without
and with makeups.

Experiment 4: Comparisons with Human Observers
in Face Verification Across Makeup Variance: As an im-
portant baseline, the human ability in face verification across
makeup variance was also tested. We selected 30 pairs (15
females and 15 males) of interpersonal images and presented
them to 10 human observers (5 males and 5 females) with age

Table 6. Accuracy (%) of human ability on face verification
across makeup variance.

Method Male Female
Human 90.00 63.33
Ours 63.30 61.50

of 20 to 30 years old. To make a fair comparison with our
computer algorithm, the 30 pair images with size of 64 × 64
each were presented to human observers. None of them re-
ceived training on the task before the experiment. Table 6
shows the accuracy of human ability on facial verification. We
can observe that our proposed approach can achieve compara-
ble performance with human observers on facial verification
in presence of makeup for females, and performs worse than
human for males. The reason is that face makeup for females
tends to more significantly change the appearance of faces,
making it more challenging for both computer and humans to
correctly verify females without and with face makeups.

4. CONCLUSION

In this paper, we have investigated the problem of face ver-
ification in the presence of makeup. We have built a dataset
containing paired images of individuals without and with
makeups. We have further proposed a canonical correlation
analysis-based approach to increase the similarity of two
face images as measured by correlations in a meta subspace
between face images without and with makeups, such that
more discriminative information can be exploited for verifi-
cation. Experimental results on our face makeup dataset have
demonstrated the efficiency of our approach.
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