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ABSTRACT
Segmentation-based tracking methods are popular in alleviat-
ing the model drift problem during online-learning of visual
trackers. However, one of the limitations of those methods is
that tracking results guide the process of segmentation. The
model drift problem in tracking may have significant influ-
ence on segmentation. In this paper, we propose an online
structured Hough Forests to address this limitation. The re-
sults of object tracking do not have significant influence on
the process of segmentation. Our algorithm shows more ro-
bust results on several challenging sequences.

Index Terms— Online Structured Hough Forests, Visual
Tracking, Online Learning, Segmentation

1. INTRODUCTION
In recent years, segmentation-based tracking methods have
increasingly been used to alleviate the online drift prob-
lem [1–4]. The idea behind those methods is that accu-
rate segmentation can alleviate the model drift problem
by providing an object contour constraint. Typically, the
segmentation-based tracking framework is performed by
three steps: (1) locating a target by a tracker, (2) utilizing
tracking results to segment the target, and (3) utilizing the
foreground-background segmentation results to update the
tracker’s model. Consequently, model drift may seriously
affect the results of segmentation.

Because the single atomic class labels to samples do not
exhibit an inherently structural information, exploiting the
structural information of the labeled images has drawn much
attention in computer vision community. Structured learn-
ing [5–7] is introduced to the computer vision area for object
detection [8] and tracking [9].

Our paper is related to and inspired by the recent work
in [7]. The authors of [7] provide a simple but effective way
to integrate structural information in the popular random for-
est learning algorithms [10, 11]. However, their work is pro-
posed to deal with semantic image labeling by offline learn-
ing. In our setting, there is no enough offline labeled samples
for training forests except for the first frame which is anno-
tated manually. In this study, we propose an online Struc-
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tured Hough Forests (i.e., SHF) approach which can combine
the structured class-labels used in [7] and the online Hough
Forests in [12] into a single structured learning framework.
The main advantage of our algorithm is that the tracking and
segmentation is simultaneously accomplished by using the
online structured Hough Forests. Because the process of seg-
mentation do not directly utilize the results of tracking, model
drift during tracking has less influence on the results of seg-
mentation. In addition, we propose to use level optimization
to extend offline structured statistics in trees’ leaf to online
mode.

2. OUR METHOD

Our algorithm (see Fig. 1) integrates structured information
into online Hough Forests, which is called online structured
Hough Forests. It can be seen from Fig.1 that the object cen-
ters are located by Hough voting, and the binary images ob-
tained via structured class-labels are used to guide the updat-
ing processes of the object appearance models.

Fig. 1. The flowchart of the online Structured Hough Forest

2.1. Online Structured Hough Forests

The structured Hough Forests algorithm consists of a set of
random trees [10] that are trained to learn a mapping from
local image patches (the patches’ size is: d×d) to their corre-
sponding Hough votes in a Hough space H ⊆ RH and struc-
tured labels in a structured label space L. The online SHF
approach is summarized in Algorithm 1.
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Algorithm 1 Online Structured Hough Forests
Input: The figure-ground maskm0 and an object center

c0 in the first frame; the video sequence Fseq =
{f0, f1, ..., fNmax

}
Output: The figure-ground masks Mrem =

{m1, ...,mmax} and the object centers
Crem = {c1, ..., cmax} in the following
frames in the video sequence.

Initialization:
1) Warp m0 and the corresponding frame f0 ∈ Fseq to
get three sets: Minit = {m0,m

w
1 , ...,m

w
T−1}, Finit =

{f0, fw1 , ..., fwT−1} and Cinit = {c0, cw1 ..., cwT−1}.
2) Generate randomly sampled image patches from
Finit, simultaneously record the corresponding struc-
tured labels and voting vectors according to Minit and
Cinit.
3) Extract HOG-like features for the samples.
4) Train structured Hough Forests by using the labeled
samples.
for n = 1 : Nmax do

. Obtain Hough Image V mapn and structured label
prediction by using SHF at the current frame fn.
. Estimate the object center cn from V mapn .
. Fuse the structured predictions to get the figure-
ground masks mn at the current frame fn.
. Extract samples {Su1,v1,fn , ...,SuM ,vM ,fn} ran-
domly from fn, cn and mn to update the SHF.

2.1.1. Hough Voting and Structured Labels

Hough votes [13] are the vectors which point toward the ex-
pected object center. An object position estimate h can be
computed by accumulating Hough votes from local image
patches. The Hough image can be generated by accumulat-
ing the weighted voting vectors from the image patches in the
current test image. For a detailed description, we refer readers
to the work [2, section 2.2].

In previous approaches, an image patch is assigned with
one single atomic class label. The structured label l is a ma-
trix whose size is d′ × d′. The elements of the matrix are the
figure-ground labels, i.e., lij ∈ Y (Y = {0, 1}), which de-
notes the ij-entry of the label patch l . When an image patch
pixel corresponding to lij is a foreground pixel, the value of
lij is 1; otherwise, it is 0.

2.1.2. Training Samples

Let p(u,v,I) denote a patch which is extracted at a position
(u, v) in an image I (i.e., the patch’s center is at (u, v)), a
training sample at (u, v) is obtained in the form {Su,v,I =
(p(u,v,I), χ(u,v,I), l(u,v,I),v(u,v,I))}, where p(u,v,I) is the
original image patch centered at (u, v) of the image I; χ(u,v,I)

is the feature of p(u,v,I); and l(u,v,I) is the structured label of
p(u,v,I). The Hough vote v(u,v,I) is defined for the training
sample when the percentage of foreground pixels is larger

than a threshold α in p(u,v,I) (α = 1/3 in our case).

2.1.3. Extremely Randomized Decision Forests

Before the structured Hough Forests can be applied for pre-
diction, the tree structure and the statistics in the leaf nodes
have to be established. However, the labeled samples at the
first frame are not enough to optimize the binary splitting tests
at a tree’s non-leaf node. Thus, for simplicity and efficiency,
we adopt the random initialization of the tree structures [2,
section 3.1] to solve the problem.

2.1.4. Leaf Node Statistics

After training samples have been routed through the tree to
the leafs, we need to model the corresponding structured la-
bels and voting map of the leaf nodes.

Let Lκ (Lκ ⊆ L) be the set of the structured label patches
arriving at the leaf κ. Because the class label l representing
the leaf node is now a structured label with a size of d′ × d′,
we need to use a mechanism to select a structured label from
Lκ which can represent the label patches in Lκ. A good se-
lection for the structured class label should represent a mode
of the joint distribution of the label patches in Lκ. For sim-
plicity, we compute the joint probability as follows:

Pr(l |Lκ) =
∏
(i,j)

Pr(i,j)(lij |Lκ) (1)

where lij is the value at the position (i, j) of the structured
label patch l .

Pr(i,j)(lij |Lκ) = 1−
∑NLκ
r=1 |lij − lrij |

NLκ
(2)

whereNLκ denotes the number of the structured label patches
in the set Lκ. lrij is the label at (i, j) of the r-th structured la-
bel patch in the set Lκ. The label patch π in Lκ is finally se-
lected for the leaf κ as the single label patch prediction which
can maximize the joint probability:

π = arg max
l∈Lκ

Pr(l |Lκ) (3)

The Hough vector set Vκ at the leaf node κ is the set of the
vectors derived from the samples which reach the leaf node κ
during initialization and updating steps. The voting weight
can be computed as follows:

wκ =

∑NLκ
r=1 h

(
Sfore(l

r)
S(lr)

)
NLκ

(4)

where h(·) is a step function with a threshold θ = 1/3.
Sfore(·) is the area of the foreground region in the sample’s
structured label patch, and S(·) is the corresponding total
area. Only when the foreground area is more than one-third
of the entire region, this sample will contribute a Hough vote.
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2.2. Structured Prediction and Hough Localization
The structured predictions gathered from the trees of the struc-
tured Hough Forests have to be combined into a single label
patch prediction. We use the mechanism, similar to (3), to
obtain the label patch prediction for the test patch p(u′,v′,I).

For each pixel in a test image, we can obtain d′ × d′ class
predictions from the adjacent pixels’ structured predictions,
which have to be integrated into a single class prediction. A
simple way is to use the voting mechanism which selects the
mostly voted class per pixel. After the fusion of the structured
predictions, we get a mask mn for the test image.

During localization, we locate the object center by search-
ing for the maxima at the voting map V mapn .

2.3. Initialization and Online Update
We follow the step Initialization at Algorithm 1 to initialize
the SHF tracker. The figure-ground mask can not only pro-
vide an accurate contour of a target, but also provide struc-
tured labels for the samples. Therefore, we use the figure-
ground mask m0 in the first frame to train the SHF tracker.

After the completion of the structured prediction and lo-
calization, the tracked object is not only located, but also ac-
curately segmented from the background. Then, we extract
new training samples {Su1,v1,fn , ...,SuM ,vM ,fM } randomly
from the tracked object region and the background surround-
ing the object. The training samples are also routed through
the trees of the structured Hough Forests to the leafs.

For the update of Hough votes of the leafs, we simply add
Hough votes from new samples to their corresponding leaf
nodes. We also recalculate the voting weight w of each leaf
node.

Because the value of NLκ increases after several times
of update, the computational cost for solving (3) significantly
grows with time. We use exhaustive search to solve it.

Therefore, we use a mechanism of level optimization to
select the single label patch prediction for each leaf node.
We use L0:n

κ = {Lm0
κ ,Lm1

κ , ...,Lmtκ , ...,Lmnκ } to represent
the samples’ structured label patches reaching to the leaf κ
from the beginning to the current time n. Lmtκ represents the
samples reaching to the leaf κ at time t. If there is no sam-
ple reaching to the leaf κ at time t, Lmtκ is null. Firstly, if
Lmtκ exists, we select the label patch πmt as the single label
patch prediction to represent Lmtκ (t = {0, 1, ..., n}) which
can maximize the joint probability:

πmt = arg max
l∈Lmtκ

Pr(l |Lmtκ ) (5)

Then, we get the structured label patch set L∗κ = {πmt |t ∈
(0, 1, ..., n)}. At last, we also select a label patch π as the sin-
gle label patch prediction to represent L∗κ by using a strategy
similar to (5). We use the label patch π to represent L0:n

κ .
During updating at time n, we need to calculate πmn cor-

responding to Lmnκ ({πm0 , πm1 , ..., πmn−1} is obtained at the
previous initialization and updates), and then combine it with

{πm0 , πm1 , ..., πmn−1} to obtain the label patch π by using
above-mentioned method. The mechanism of level optimiza-
tion can largely decrease the computational cost.

For online tracking, not only the distribution of the sam-
ples changes over time, but also the computational cost for
online update increases over time. Therefore, we need to for-
get old information by discarding the old samples. However,
in order to alleviate the model drift problem, we should retain
the samples from the initialization. We can also easily obtain
V0:n
κ = {Vm0

κ ,Vm1
κ , ...,Vmtκ , ...,Vmnκ } to represent the sam-

ples’ Hough votes reaching to the leaf κ from the beginning to
the current time n. In order to keep the validity of the level op-
timization, we propose to discard two subsets Lmβκ and Vmβκ

from the two sets L0:n
κ and V0:n

κ , when mn exceeds a certain
threshold α and mβ is randomly obtained in the interval of
[1,mn − 1] by using the random process of the uniform dis-
tribution.

3. RESULTS
In this section, the proposed SHF tracker is applied to several
publicly available challenging video sequences and compared
with four state-of-the-art trackers: the online boosting tracker
(Boost) [14], the fragments based tracker (FRAG) [15], the
online Hough forest tracker based on online tree’s growth
(HF1) [12], and the Hough forest tracker based on extremely
random tree (HF2) [2].

We use the same settings to our tracker for all the exper-
iments. The features used are as follows: Lab color space (3
channels), the first and second order derivatives in x and y (4
channels), and 9-bin histogram of the gradients (9 channels).
The used image patch size is 12 × 12 pixels. The threshold
value of α in the Section 2.3 is set to 6.

Table 1. The average errors (in pixels) of the estimated object
locations.

Video SHF Boost FRAG HF1 HF2
Bolt 18 113 81 80 273
Face 11 11 22 17 32

Pedxing-seq3 17 40 48 20 18
RIGHT 6 44 36 35 42

Seq2 4 5 37 5 4
Woman 17 120 73 74 73

3.1. Qualitative Comparison
The sequences of Bolt, Pedxing-seq3, RIGHT, and Woman
contain non-rigid deformation. The sequences of Bolt and
RIGHT have background distractors around the target. The
sequences of Face and Woman contain occlusions. The se-
quences of RIGHT and Seq2 involve the challenging illumi-
nation variation. In Figure 2, we show the qualitative compar-
ison results.

For the Bolt sequence, only SHF successfully tracks the
target throughout the sequence, while the others fail because
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Fig. 2. The comparison results obtained by SHF (yellow), the
OBT (red), FRAG (green), HF1 (blue), HF2 (cyan) on the six
challenging video sequence.

of the non-rigid deformation and the background distractors
around the object. For the RIGHT sequence, the background
distractors, non-rigid deformation and illumination variation
lead the other trackers to lose the target at the intermedi-
ate stage. In comparison, the proposed SHF tracker can ro-
bustly deal with occlusions and non-rigid deformation in the
Woman sequence, and it never loses the target until the end
of the sequence. For the Face, Pedxing-seq3, and Seq2 se-
quences, when the challenging situations occur in those se-
quences, the other trackers easily deviate the target center
while SHF achieves more robust results.

3.2. Quantitative Comparison

The quantitative comparison results of the competing track-
ers are shown in Figure 3. The center location error is defined
as the L1-Norm error (i.e., |xtrn − x| + |ytrn − y|) between
the target’s ground truth location (xtrn , y

tr
n ) and the estimated

Fig. 3. The error plots of the estimated object locations ob-
tained by the five competing trackers. 1st is for the Bolt and
Face sequences; 2nd row is for the Pexding-seq3 and RIGHT
sequences; 3rd row is for the Seq2 and Woman sequences.

location (xn, yn) obtained by the trackers at the n-th frame.
Figure 3 plots the center location errors obtained by the five
competing methods on the six sequences. Table 1 gives the
averaged errors of the estimated target locations obtained by
the competing methods. As can be seen in Figure 3 and Ta-
ble 1, the other trackers fail to track the target when the chal-
lenging situations occur in the video sequences. In compari-
son, only SHF can successfully track the target throughout all
the sequences and achieved the most accurate results.

4. CONCLUSIONS

In this paper, we develop a novel online structured Hough
Forests learning method for visual tracking, in which the
structured label is incorporated into online Hough Forests to
simultaneously implement object localization and segmenta-
tion. This can effectively alleviate the model drift problem.
In addition, we propose to use level optimization to reduce
the computational cost. The results demonstrate that the pro-
posed online structured Hough Forests method is robust to
illumination changes, non-rigid deformation, occlusion, and
clutter background.
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