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ABSTRACT

Ball-tracking is a key technology in processing and analyzing
a ball game. Because of the complexity of visual scenes, a
large number of objects are usually selected as candidates for
the ball, leading to incorrect identification, and conversely,
the true position of the ball may sometimes be missed. In this
paper, we propose a two layered data association method to
improve the robustness of ball-tracking. At a local layer, we
use a sliding window based Token Transfer method to gen-
erate a set of sub-trajectory candidates. At a global layer, a
single ball trajectory is obtained by applying a dynamic pro-
gramming based splice method to a graph consisting of the
sub-trajectory candidates. We evaluated our approach on ten-
nis matches from the Australian Open and the U.S. Open, and
the results obtained show that our approach outperforms the
state-of-art approach by around 30 %.

Index Terms— data association, tennis, ball tracking, tra-
jectory, layered

1. INTRODUCTION

Sports video analysis is currently receiving increasing at-
tention. It has a number of useful and beneficial applica-
tions, such as highlight extraction [1], tactics analysis [2],
computer-assisted refereeing [3], etc. Robust detection and
tracking of figures and objects in the game is the foundation
for high level analysis. Knowledge of the position of the ball
at any time is also essential for more ambitious systems that
attempt to “understand” a game [4].

This paper is concerned with ball tracking, which has
been traditionally approached as a data association task using
a Markov chain assumption and a predictive motion model,
applied frame by frame. However, data association in candi-
date “clutter” is difficult because of false positives (non-ball
objects detected as balls) and false negatives (undetected
balls). After probabilistic data association (PDA) was first
proposed by Bar-Shalom and Fortmann [5], many researchers
have strived to improve the robustness of this task [6] [5] [7].
Viterbi Data Association (VDA) [7] uses a parallel search
scheme using the Viterbi algorithm. Robust data association

(RDA, [6]) treats data association as a motion fitting problem
in an attempt to provide robustness to abrupt motion change
(e.g. when the ball is struck). Yan et al.’s work [8] describes
a hierarchical scheme with a graph-theoretic formulation
that attempts to overcome some of RDA’s limitations (e.g.
the lack of motion smoothness constraints). More recently,
Huang et al. [9] described a Viterbi-based method to estimate
ball trajectory: however, it loses some precision in track-
ing the target, mainly because of the lack of a well-defined
motion model.

In this paper, we describe a two layered approach for ten-
nis ball tracking that attempts to increase robustness against
both abrupt motion change and the absence of the tracked ob-
ject. Given a set of ball candidates, at the “local” layer we use
a Token Transfer method to generate a set of sub-trajectories
as the input to the next layer. At the “global” layer, we use a
dynamic programming based splice scheme to obtain the op-
timal sub-trajectory combination as the final trajectory. The
paper is organized as follow. Ball candidate extraction and
the local method are described in Section 2. A description of
the global layer approach is given in Section 3. Evaluation
results are shown in Section 4, and conclusions are presented
in Section 5.

2. LOCAL LAYER: N-BEST SUB-TRAJECTORIES
EXTRACTION

2.1. Candidates Extraction

To extract ball candidates in each frame, we difference two
adjacent frames and choose candidates using size and color
filters. Two kinds of mask are then used to discard false
candidates. Firstly, we extract the court lines using the di-
rect linear transformation (DLT, [10]) to discard those can-
didates that occur on the court lines. Secondly, we apply a
mean shift based method [11] to track players and discard
ball candidates that occur inside players’ regions. We de-
note the set of ball candidates extracted in frame ft as Ct =
{C1

t , C
2
t . . . , C

Nt
t } (t = 1 . . . T ).
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Fig. 1. Prediction of ball position using a linear acceleration
model and detected ball candidates. Filled circles represent
actual detected ball candidate positions and the dotted circle
a predicted position.

2.2. Motion Model and Quality Score

Next, we define a directed network using the following link
rule: each candidate can link forwards to any candidate lo-
cated in its neighborhood [mTh,MTh] in the next frame.
MTh and mTh represent the maximum and minimum pixel
distances a tennis ball can travel in4T (the reciprocal of the
frame rate): these values are here set experimentally to 65 and
5 respectively. The nodes of the resulting network are termed
Candidate Nodes (CNs), and each path through the network
corresponds to a sub-trajectory candidate.

To predict the position of a ball in frame ft+1, we “score”
each candidate Cq

t+1 using a local motion model estimated
using the positions of previous candidates in three previous
frames, and the predicted candidate Ĉ∗

t+1 given by the motion
model. The local motion model assumes constant accelera-
tion. Velocity V k

t and acceleration Acckt are estimated using
equations 1 and 2 below, and are used to predict a candidate
position Ĉ∗

t+1 in equation (3).

Acckt =
(Ck

t − Cj
t−1)− (Cj

t−1 − Ci
t−2)

4T 2
(1)

V k
t =

Ck
t − Cj

t−1

4T +Acckt ×4T (2)

Ĉ∗
t+1 = Ck

t + V k
t ×4T +

Acckt × (4T )2

2
(3)

Figure 1 depicts a typical prediction and score for a candi-
date. We define two “quality” scores for Cq

t+1 in frame ft+1:

S1 = log(
d−mTh

MTh−mTh
) (4)

S2 = log(
θ

180
) (5)

where d and θ are the pixel distance and the angle between
Ĉ∗

t+1 and Cq
t+1, as shown in Fig. 1. Then the quality score for

any particular path in the directed network is S1 + S2 for all
triplets inside the path. To avoid large negative scores for S1

and S2, we constrain their range to the interval [Sm, 0] where
Sm is predefined.

2.3. Token Transfer

To search for the optimal path, we propose a modified ver-
sion of the Viterbi algorithm which we call Token Transfer.
A Token holds two quantities, of which CNPath is the history
of CNs that the Token has passed through, and Score is the
accumulated score (i.e. the sum of S1 and S2 over all triples
in CNPath).

The longer a CNPath becomes, the more chance there is
that it incorporates false ball candidates. We utilize a win-
dowing technique to alleviate this problem. A Token Trans-
fer process, shown in Algorithm 1, is executed afresh within
each window (in our work, the window length and sliding step
length are set to 21 and 5 empirically). Here, Toksit repre-
sents a set of Tokens passed up to Candidate Node Ci

t (∈ Ct);
tok0 is an initial Token whose Score=0, CNPath=∅. In win-

Algorithm 1 Token Transfer
Initialization:
1: Toksi1 = {tok0};

Recursion:
2: for all ft within each window wn do
3: if Toksit == ∅ then
4: Toksit = {tok0};
5: end if
6: Toksjt+1 = ∅;
7: for all tok ∈ Toksit do
8: for all Cj

t+1 ∈ Ct+1 do
9: Calculate S1 and S2;(S1=0, S2=0 when t < 3)

10: tok→Score = tok→Score +S1 + S2;
11: tok→CNPath = tok→CNPath +Cj

t+1;

12: Add tok into Toksjt+1;
13: end for
14: end for
15: Pick the N top-ranked Tokens from Toksjt+1 into Tokswn ;
16: end for

dow wn, we retain the N top-ranked Tokens for each frame
(we used N = 2). The CNPath of these selected Tokens thus
comprise a sub-trajectory set, Tokswn , and are used as the
input to the global layer.

3. GLOBAL LAYER: SUB-TRAJECTORIES SPLICE

At the global layer, our goal is to determine an optimal subset
from the set of sub-trajectories Tokswn

, to form the final ball
trajectory. To do this, we firstly construct a directed acyclic
graph (DAG) based on these sub-trajectories, and then search
for the optimal directed path through the DAG using Dynamic
Programming.

3.1. Construction of Directed Acyclic Graph

We illustrate the kind of sub-trajectories we obtain in Fig.
2(a). Here, each column represents a window (wn) and con-
tains a small number of sub-trajectories (Tokiwn

). These
sub-trajectories, also called Token Nodes (TNs), are then
used to form a grid structure as shown in Fig. 2(b). The
DAG is constructed by linking TNs. Three different cases
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are possible, depending on the relationship between the two
TNs (Tokiwn

and Tokjwn+1
) occurring in adjacent windows

wn and wn+1:

Case1. Temporal and spatial overlap:
If the front portion of CNPath of Tokjwn+1

is the same as
the rear portion of the CNPath of Tokiwn

), the two TNs are
connected with a directed arc from Tokiwn

to Tokjwn+1
.

Case2. Temporal overlap only:
There is no directed arc between Tokiwn

and Tokjwn+1
.

Case3. No temporal overlap:
For this case, we linearly extend Tokiwn

at its end point (in
frame ft1 ) and linearly extend Tokjwn+1

at its start point
(in frame ft2 ) along the direction of the velocity vectors of
the two points. If a junction of the two extended lines ex-
ists and the distance between the two end points is less than
MTh×(t2−t1), we connect the two TNs with a directed arc.

After connecting all tokens, we obtain a DAG, as shown in
Fig. 2(c), in which the score of a TN in the nth window is de-
fined as S(wn, i). However, not every window contains true
sub-trajectories: these windows should be skipped. Hence,
shown in Fig. 2(d), for each window we append a Dummy
Token Node (DTN) whose CNPath=∅ and Score=0. DTNs
can connect to any TN and DTN, which we term Soft Link.

window step

Y

Sub-trajectory

Window

(a) Sub-trajectories

Y

Token Node(TN)

Window

(b) Token Nodes (TNs)
Y

Window

TNs

(c) TNs with links

Y

Window

TNs

DTNs

Soft Links

(d) TNs and DTNs with links

Fig. 2. Construction of DAG from (a) to (d) step by step.

3.2. Sub-Trajectories Splice

To form the optimal trajectory, we employ a Dynamic Pro-
gramming approach to process the obtained DAG. The full
algorithm is presented in Algorithm 2. We define two recur-
sive quantities F (wn, i) and G(wn). As illustrated in Fig. 3,
F (wn, i), computed only on TNs, indicates the minimum cost
of the paths ending up at the ith TN in wn. G(wn), computed
only on DTNs, represents a set of costs of paths ending up at

TNs

DTNs

Soft Links

Fig. 3. Diagrammatic description of Algorithm 2.

the DTN in wn. In addition, P (wn, i) stores the backtracking
information of the optimal path. Figure 3 gives a diagram-
matic explanation of how to compute F (wn, i) and G(wn)
recursively, and the algorithm is shown in Algorithm 2.

In order to prevent a path from using only the dummy
tokens when traversing the DAG, we set three conditions:

C1: a path consisting only of dummy tokens is removed
C2: a path containing three consecutive dummy tokens

at the end is removed
C3: the two top-ranking paths are retained in the recursion

We also assume that trajectories in which the direction
changes very quickly are unlikely to be correct. Hence when
searching through the DAG, we use a penalty factor (pf )
defined as:

pf =
LCount

Length of Partial Path
− 1 (6)

LCount is found by examining the angle between each pair of
consecutive path segments in each candidate path and noting
the number of angles whose value is larger than a threshold
(set to 70 degrees here). During searching for the optimal
path, we weight F (wn, i) by pf—hence the smaller the value
of pf is, the more likely the path will be selected.

4. EVALUATION

4.1. Experimental Setting

In our experiments, we used material from two tennis matches.
One was a men’s singles match from the 2010 Australian
Open and the other a men’s singles match from the 2011 US
Open. We extracted 37206 and 24363 frames from the two
match videos at a sampling rate of 25 frames per second. The
ground truth was obtained by manually locating and storing
the ball’s position in a frame. Frames in which the ball did
not appear were labeled as inactive frames. After application
of the candidate extraction schemes described in Section 2.1,
the average number of detected ball candidates per frame was
4.5.

The metric used for evaluating algorithms is the F1-score:

F1 = 2 ∗ Precision ∗ Recall/(Precision + Recall) (7)

Precision = ntp/(ntp + nfp) (8)

Recall = ntp/(ntp + nfn) (9)

where:
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Algorithm 2 Sub-Trajectories Splice
Initialization:

G(w1) = ∅, F (w1, i) = S(w1, i);
Recursion:

1: for all n = {1, 2, ..., N} do
2: G , {G(wn−1) | C1};
3: F (wn, i) = minj{{F (wn−1, j)∪G}+S(wn, i)}×pf ;
4: G(wn) = {F (wn−1, j) ∪G(wn−1) | C2 ∧ C3};
5: P (wn, i) = argminj{F (wn, i) ∪G(wn)};
6: end for

Termination:
7: F ∗ = mini{F (wN , i) ∪G(wN )};
8: P ∗ = argmini{F (wN , i) ∪G(wN )};

ntp , # frames where a ball was detected and was present,
nfp , #frames where a ball was detected but wasn’t present,
ntn , # frames where a ball wasn’t detected and wasn’t present,
nfn , #frames where a ball wasn’t detected but was present.

In our experiments, the values of ntp, nfp, ntn and nfn were
obtained by comparing the distance between the actual ball
position and the estimated ball position in each frame. We
treat the hypothesised candidates as false candidates if this
distance is larger than 10 pixels.

4.2. Evaluation

Figure 4 illustrates an example of ball tracking using our ap-
proach. Figure 4(a) plots the sub-trajectory set obtained in the
local layer, while Fig. 4(b) shows the final estimated trajec-
tory.

Table 1. The performance of three editions of method

Data Method Precision Recall F1 TP Err.
(%) (%) (%) (pixels)

Aust.
Huang[9] 44.17 50.49 47.12 1.83

TL 72.01 72.50 72.26 1.94
TL+PF 73.13 73.11 73.12 1.94

U.S.
Huang[9] 73.33 60.69 66.41 1.53

TL 81.47 67.27 73.69 1.97
TL+PF 82.31 67.52 74.19 1.79

Table.1 summarizes the performance of our two-layered
(TL) approach compared with a baseline, which is the results
using the method introduced in our previous work [9]. The
baseline method uses the Viterbi algorithm to search a glob-
ally smooth trajectory amongst weighted candidates, but there
is no motion model and the Viterbi search is less sophisti-
cated.

It is clear that, when the F1 score is considered, our pro-
posed approach outperforms the baseline by a significant mar-
gin. However, the pixel error (TP Err.) is slightly higher in all
cases when compared with the baseline. This suggests that
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(a) The local layer

200 400 600 800 1000
0

500
1000

0

50

100

150

200

250

Column

The Final Trajectory(3D).

Row

T
im

e

(b) The global layer

Fig. 4. A complete example of our approach.

the new approach is much better at identifying the presence
or absence of a ball in a frame, but the estimates of the ball’s
position are not quite as good as the baseline technique. In
most cases of interest, this slight loss of accuracy in position
information is more than compensated for by the higher accu-
racy in identifying that the ball is present or absent from the
frame. Note that the addition of the smoothness penalty factor
(PF) always improves the F1 score, and for the U.S. match,
lowers the pixel error considerably.

5. CONCLUSION AND FURTHER WORK

In this paper, we have presented a two layered data association
method for tennis ball tracking in a complex scene. Experi-
ments show that our approach is significantly more robust to
false detections than the technique used in our previous work.
In the future, we will extend the approach to integrate audio
information. This will lay the foundations for making a high
level analysis of game and making an analysis of player’s ac-
tions and tactics.
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